Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase

被引:14
作者
Kim, Heejin [1 ,2 ]
Oh, Eun Joong [1 ,2 ]
Lane, Stephan Thomas [1 ,2 ]
Lee, Won-Heong [1 ,2 ,3 ]
Cate, Jamie H. D. [4 ,5 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Gwangju 500757, South Korea
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
Cellobiose fermentation; Cellodextrin transporter; Cellobiose phosphorylase; Cerevisiae; ETHANOL-PRODUCTION; CO-FERMENTATION; XYLOSE; YEAST; COFERMENTATION; TRANSPORTERS; STRAIN;
D O I
10.1016/j.jbiotec.2018.04.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To efficiently ferment intermediate cellodextrins released during cellulose hydrolysis, Saccharomyces cerevisiae has been engineered by introduction of a heterologous cellodextrin utilizing pathway consisting of a cellodextrin transporter and either an intracellular beta-glucosidase or a cellobiose phosphorylase. Among two types of cello dextrin transporters, the passive facilitator CDT-2 has not enabled better cellobiose fermentation than the active transporter CDT-1, which suggests that the CDT-2 might be engineered to provide energetic benefits over the active transporter in cellobiose fermentation. We attempted to improve cellobiose transporting activity of CDT-2 through laboratory evolution. Nine rounds of a serial subculture of S. cerevisiae expressing CDT-2 and cellobiose phosphorylase on cellobiose led to the isolation of an evolved strain capable of fermenting cellobiose to ethanol 10-fold faster than the original strain. After sequence analysis of the isolated CDT-2, a single point mutation on CDT-2 (N3061) was revealed to be responsible for enhanced cellobiose fermentation. Also, the engineered strain expressing the mutant CDT-2 with cellobiose phosphorylase showed a higher ethanol yield than the engineered strain expressing CDT-1 and intracellular beta-glucosidase under anaerobic conditions, suggesting that CDT-2 coupled with cellobiose phosphorylase may be better choices for efficient production of cellulosic ethanol with the engineered yeast
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
  • [31] PHB production from cellobiose with Saccharomyces cerevisiae
    Anna Ylinen
    Jorg C. de Ruijter
    Paula Jouhten
    Merja Penttilä
    Microbial Cell Factories, 21
  • [32] Single Amino Acid Substitutions in HXT2.4 from Scheffersomyces stipitis Lead to Improved Cellobiose Fermentation by Engineered Saccharomyces cerevisiae
    Ha, Suk-Jin
    Kim, Heejin
    Lin, Yuping
    Jang, Myoung-Uoon
    Galazka, Jonathan M.
    Kim, Tae-Jip
    Cate, Jamie H. D.
    Jin, Yong-Su
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (05) : 1500 - 1507
  • [33] Broadening the Substrate Specificity of Cellobiose Phosphorylase from Clostridium thermocellum for Improved Transformation of Cellodextrin to Starch
    Zhang, Yuanyuan
    Li, Yapeng
    Lin, Hui
    Mao, Guotao
    Long, Xiang
    Liu, Xinyu
    Chen, Hongge
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [34] Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling
    Chen, Yingying
    Wu, Ying
    Zhu, Baotong
    Zhang, Guanyu
    Wei, Na
    PLOS ONE, 2018, 13 (06):
  • [35] Improved resistance against oxidative stress of engineered cellobiose-fermenting Saccharomyces cerevisiae revealed by metabolite profiling
    Kim, Tae-Yeon
    Oh, Eun Jung
    Jin, Yong-Su
    Oh, Min-Kyu
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2014, 19 (06) : 951 - 957
  • [36] Effect of salts on the Co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae
    Casey, Elizabeth
    Mosier, Nathan S.
    Adamec, Jiri
    Stockdale, Zachary
    Ho, Nancy
    Sedlak, Miroslav
    BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [37] Co-Fermentation of Glucose-Xylose-Cellobiose-XOS Mixtures Using a Synthetic Consortium of Recombinant Saccharomyces cerevisiae Strains
    Yan, Ning
    Luan, Tao
    Yin, Mengqi
    Niu, Yaping
    Wu, Longhao
    Yang, Shuo
    Li, Zailu
    Li, Hongxing
    Zhao, Jianzhi
    Bao, Xiaoming
    FERMENTATION-BASEL, 2023, 9 (08):
  • [38] Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase
    Lee, Won-Heong
    Nan, Hong
    Kim, Hyo Jin
    Jin, Yong-Su
    JOURNAL OF BIOTECHNOLOGY, 2013, 167 (03) : 316 - 322
  • [39] The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae
    Dzanaeva, Ljubov
    Kruk, Barbara
    Ruchala, Justyna
    Nielsen, Jens
    Sibirny, Andriy
    Dmytruk, Kostyantyn
    CELL BIOLOGY INTERNATIONAL, 2020, 44 (08) : 1606 - 1615
  • [40] Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins
    Eriksen, Dawn T.
    Hsieh, Pei Chiun Helen
    Lynn, Patrick
    Zhao, Huimin
    MICROBIAL CELL FACTORIES, 2013, 12