Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase

被引:14
|
作者
Kim, Heejin [1 ,2 ]
Oh, Eun Joong [1 ,2 ]
Lane, Stephan Thomas [1 ,2 ]
Lee, Won-Heong [1 ,2 ,3 ]
Cate, Jamie H. D. [4 ,5 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Gwangju 500757, South Korea
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
Cellobiose fermentation; Cellodextrin transporter; Cellobiose phosphorylase; Cerevisiae; ETHANOL-PRODUCTION; CO-FERMENTATION; XYLOSE; YEAST; COFERMENTATION; TRANSPORTERS; STRAIN;
D O I
10.1016/j.jbiotec.2018.04.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To efficiently ferment intermediate cellodextrins released during cellulose hydrolysis, Saccharomyces cerevisiae has been engineered by introduction of a heterologous cellodextrin utilizing pathway consisting of a cellodextrin transporter and either an intracellular beta-glucosidase or a cellobiose phosphorylase. Among two types of cello dextrin transporters, the passive facilitator CDT-2 has not enabled better cellobiose fermentation than the active transporter CDT-1, which suggests that the CDT-2 might be engineered to provide energetic benefits over the active transporter in cellobiose fermentation. We attempted to improve cellobiose transporting activity of CDT-2 through laboratory evolution. Nine rounds of a serial subculture of S. cerevisiae expressing CDT-2 and cellobiose phosphorylase on cellobiose led to the isolation of an evolved strain capable of fermenting cellobiose to ethanol 10-fold faster than the original strain. After sequence analysis of the isolated CDT-2, a single point mutation on CDT-2 (N3061) was revealed to be responsible for enhanced cellobiose fermentation. Also, the engineered strain expressing the mutant CDT-2 with cellobiose phosphorylase showed a higher ethanol yield than the engineered strain expressing CDT-1 and intracellular beta-glucosidase under anaerobic conditions, suggesting that CDT-2 coupled with cellobiose phosphorylase may be better choices for efficient production of cellulosic ethanol with the engineered yeast
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
  • [21] PHB production from cellobiose with Saccharomyces cerevisiae
    Ylinen, Anna
    de Ruijter, Jorg C.
    Jouhten, Paula
    Penttila, Merja
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [22] Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis
    Casa-Villegas, Mary
    Polaina, Julio
    Marin-Navarro, Julia
    PROCESS BIOCHEMISTRY, 2018, 75 : 59 - 67
  • [23] An extra copy of the β-glucosidase gene improved the cellobiose fermentation capability of an engineered Saccharomyces cerevisiae strain
    Hyo Jin Kim
    Won-Heong Lee
    Timothy Lee Turner
    Suryang Kwak
    Yong-Su Jin
    3 Biotech, 2019, 9
  • [24] Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae
    Li, Sijin
    Du, Jing
    Sun, Jie
    Galazka, Jonathan M.
    Glass, N. Louise
    Cate, Jamie H. D.
    Yang, Xiaomin
    Zhao, Huimin
    MOLECULAR BIOSYSTEMS, 2010, 6 (11) : 2129 - 2132
  • [25] Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation
    Choi, Hyo-Jin
    Jin, Yong-Su
    Lee, Won-Heong
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2022, 32 (01) : 117 - 125
  • [26] Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae
    Oh, Eun Joong
    Ha, Suk-Jin
    Kim, Soo Rin
    Lee, Won-Heong
    Galazka, Jonathan M.
    Cate, Jamie H. D.
    Jin, Yong-Su
    METABOLIC ENGINEERING, 2013, 15 : 226 - 234
  • [27] 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae
    Nan, Hong
    Seo, Seung-Oh
    Oh, Eun Joong
    Seo, Jin-Ho
    Cate, Jamie H. D.
    Jin, Yong-Su
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (12) : 5757 - 5764
  • [28] Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae
    Turner, Timothy L.
    Zhang, Guo-Chang
    Oh, Eun Joong
    Subramaniam, Vijay
    Adiputra, Andrew
    Subramaniam, Vimal
    Skory, Christopher D.
    Jang, Ji Yeon
    Yu, Byung Jo
    Park, In
    Jin, Yong-Su
    BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (05) : 1075 - 1083
  • [29] Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains
    Santos, Angela A.
    Kretzer, Leonardo G.
    Dourado, Erika D. R.
    Rosa, Carlos A.
    Stambuk, Boris U.
    Alves, Sergio L.
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2025, 56 (01) : 91 - 104
  • [30] Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization
    Hu, Meng-Long
    Zha, Jian
    He, Lin-Wei
    Lv, Ya-Jin
    Shen, Ming-Hua
    Zhong, Cheng
    Li, Bing-Zhi
    Yuan, Ying-Jin
    FRONTIERS IN MICROBIOLOGY, 2016, 7