Intersection cuts-standard versus restricted

被引:3
作者
Balas, E. [1 ]
Kis, T. [2 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Inst Comp Sci & Control, H-1518 Budapest, Hungary
基金
美国国家科学基金会; 匈牙利科学研究基金会;
关键词
MIP; Cut; Intersection; INEQUALITIES;
D O I
10.1016/j.disopt.2015.10.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This note is meant to elucidate the difference between intersection cuts as originally defined, and intersection cuts as defined in the more recent literature. It also states a basic property of intersection cuts under their original definition. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 192
页数:4
相关论文
共 6 条
  • [1] Andersen K, 2007, LECT NOTES COMPUT SC, V4513, P1
  • [2] [Anonymous], 1972, Math. Program.
  • [3] INTERSECTION CUTS - NEW TYPE OF CUTTING PLANES FOR INTEGER PROGRAMMING
    BALAS, E
    [J]. OPERATIONS RESEARCH, 1971, 19 (01) : 19 - +
  • [4] MINIMAL INEQUALITIES FOR AN INFINITE RELAXATION OF INTEGER PROGRAMS
    Basu, Amitabh
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 158 - 168
  • [5] Equivalence between intersection cuts and the corner polyhedron
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    [J]. OPERATIONS RESEARCH LETTERS, 2010, 38 (03) : 153 - 155
  • [6] CONSTRAINED INFINITE GROUP RELAXATIONS OF MIPS
    Dey, Santanu S.
    Wolsey, Laurence A.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 2890 - 2912