Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes Brp,θ

被引:6
|
作者
Romanyuk, A. S. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, Kiev, Ukraine
关键词
D O I
10.1070/IM2006v070n02ABEH002313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain order-sharp estimates for bilinear approximations of periodic functions of 2d variables of the form f(x, y) = f(x - y), x, y is an element of pi(d) = Pi(d)(j=1)[-pi, pi], obtained from functions f(x) is an element of B-p(r),(theta), 1 <= p <= infinity, by translating the argument x is an element of pi(d) by vectors y is an element of pi(d). We also study the deviations of step hyperbolic Fourier sums on the classes B-1(r),(theta) and the best orthogonal trigonometric approximations in L-q 1 < q < infinity, of functions belonging to these classes.
引用
收藏
页码:277 / 306
页数:30
相关论文
共 50 条