Bounding quantile demand functions using revealed preference inequalities

被引:40
作者
Blundell, Richard [1 ,2 ]
Kristensen, Dennis [1 ,2 ,3 ]
Matzkin, Rosa [4 ]
机构
[1] UCL, Dept Econ, London WC1E 6BT, England
[2] Inst Fiscal Studies, London, England
[3] Univ Aarhus, CREATES, Aarhus, Denmark
[4] Univ Calif Los Angeles, Dept Econ, Los Angeles, CA 90024 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Consumer behavior; Revealed preference; Bounds; Quantile regression; INSTRUMENTAL VARIABLE ESTIMATION; NONPARAMETRIC-ESTIMATION; NONSEPARABLE MODELS; HYPOTHESIS TESTS; IDENTIFICATION; INFERENCE; SYSTEMS; ESTIMATORS; PARAMETER; BEHAVIOR;
D O I
10.1016/j.jeconom.2014.01.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops a new approach to the estimation of consumer demand models with unobserved heterogeneity subject to revealed preference inequality restrictions. Particular attention is given to nonseparable heterogeneity. The inequality restrictions are used to identify bounds on counterfactual demand. A nonparametric estimator for these bounds is developed and asymptotic properties are derived. An empirical application using data from the UK Family Expenditure Survey illustrates the usefulness of the methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 127
页数:16
相关论文
共 68 条
[1]  
Afriat S. N., 1973, International Economic Review, V14, P460, DOI DOI 10.2307/2525934
[2]  
Afriat S. N., 1967, Econometrica, V8, P67, DOI DOI 10.2307/2525382
[3]   Estimation when a parameter is on a boundary [J].
Andrews, DWK .
ECONOMETRICA, 1999, 67 (06) :1341-1383
[4]   A general asymptotic scheme for inference under order restrictions [J].
Anevski, D. ;
Hossjer, O. .
ANNALS OF STATISTICS, 2006, 34 (04) :1874-1930
[5]   Heterogeneity and the non-parametric analysis of consumer choice: Conditions for invertibility [J].
Beckert, Walter ;
Blundell, Richard .
REVIEW OF ECONOMIC STUDIES, 2008, 75 (04) :1069-1080
[6]   Specification and identification of stochastic demand models [J].
Beckert, Walter .
ECONOMETRIC REVIEWS, 2007, 26 (06) :669-683
[7]  
Belloni A., 2011, CWP1911 CEMM
[8]   On the nonparametric identification of nonlinear simultaneous equations models: Comment on Brown (1983) and Roehrig (1988) [J].
Benkard, C. Lanier ;
Berry, Steven .
ECONOMETRICA, 2006, 74 (05) :1429-1440
[9]   Estimating a convex function in nonparametric regression [J].
Birke, Melanie ;
Dette, Holger .
SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (02) :384-404
[10]  
Blundell R, 1998, J APPL ECONOMET, V13, P435