Orbital correlation effects in transition metal microclusters

被引:4
作者
Zhou, L
Wang, JT
Wang, DS
Kawazoe, Y
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Acad Sinica, Inst Phys, Beijing 100080, Peoples R China
来源
MATERIALS TRANSACTIONS JIM | 1999年 / 40卷 / 11期
关键词
orbital correlation; transition metal; microcluster; magnetocrystalline anisotropy; tight-binding; LDA plus U;
D O I
10.2320/matertrans1989.40.1237
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the framework of a self-consistent tight-binding LDA + U approach established in the present work, it is argued that orbital correlation (OC) has crucial effects to very small transition metal microclusters (with number of atoms N typically less than 10) by leading to orbital polarized ground states. Numerical calculations on Fe, Co and Ni diatomic pairs have revealed that inclusion of OC changes magnetic properties fundamentally: the inter-atomic exchange couplings are at least one order smaller than the bulk values and change with respect to electron filling from antiferromagnetic (for Fe) to ferromagnetic (for Ni), and the magnetic easy axis is usually completely different after the OC effect is considered.
引用
收藏
页码:1237 / 1243
页数:7
相关论文
共 50 条
  • [31] Transition metal-σ-borane complexes
    Pandey, Krishna K.
    COORDINATION CHEMISTRY REVIEWS, 2009, 253 (1-2) : 37 - 55
  • [32] Effects of a magnetic field on the optoelectronic properties of mono- and bi-layer transition metal dichalcogenides
    Mlinar, Vladan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (27)
  • [33] Asymmetric Transition-Metal Catalysis in the Formation and Functionalization of Metal Enolates
    Vargova, Denisa
    Nemethova, Ivana
    Plevova, Kristina
    Sebesta, Radovan
    ACS CATALYSIS, 2019, 9 (04): : 3104 - 3143
  • [34] LATTICE THERMAL CONDUCTIVITY OF TRANSITION METAL DICHALCOGENIDES
    Alexeev, Alexej
    Krivosheeva, Anna
    Shaposhnikov, Viktor
    Borisenko, Viktor
    MATERIALS PHYSICS AND MECHANICS, 2018, 39 (01): : 1 - 7
  • [35] Magnetism of BN Nanotubes with Transition Metal Substitution
    Jang, Y. -R.
    Park, Jinwoo
    Yu, B. D.
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2009, 19 (02): : 43 - 46
  • [36] Dimensionality of the Superconductivity in the Transition Metal Pnictide WP
    Nigro, Angela
    Cuono, Giuseppe
    Marra, Pasquale
    Leo, Antonio
    Grimaldi, Gaia
    Liu, Ziyi
    Mi, Zhenyu
    Wu, Wei
    Liu, Guangtong
    Autieri, Carmine
    Luo, Jianlin
    Noce, Canio
    MATERIALS, 2022, 15 (03)
  • [37] A Novel Method of Preparing Transition Metal Nanoparticles
    Wang, Huabin
    Northwood, Derek O.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1449 - 1453
  • [38] Cuproptosis: Harnessing Transition Metal for Cancer Therapy
    Wang, Wuyin
    Mo, Wentao
    Hang, Zishan
    Huang, Yueying
    Yi, Hong
    Sun, Zhijun
    Lei, Aiwen
    ACS NANO, 2023, 17 (20) : 19581 - 19599
  • [39] Transition metal chemistry in crossed molecular beams
    Willis, PA
    Stauffer, HU
    Hinrichs, RZ
    Davis, HF
    LASER TECHNIQUES FOR STATE-SELECTED AND STATE-TO-STATE CHEMISTRY IV, 1998, 3271 : 72 - 83
  • [40] Graphdiyne doped with transition metal as ferromagnetic semiconductor
    Li, Ru
    Sun, Huijuan
    Zhang, Chao
    Zhang, Mingjia
    Li, Xiaodong
    Yang, Ze
    Ma, Xiaodi
    Huang, Changshui
    CARBON, 2022, 188 : 25 - 33