Semantic Segmentation on 3D Occupancy Grids for Automotive Radar

被引:24
作者
Prophet, Robert [1 ]
Deligiannis, Anastasios [2 ]
Fuentes-Michel, Juan-Carlos [2 ]
Weber, Ingo [2 ]
Vossiek, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Inst Microwaves & Photon, D-91058 Erlangen, Germany
[2] BMW Grp, D-80788 Munich, Germany
关键词
Sensors; Radar cross-sections; Three-dimensional displays; Radar imaging; Current measurement; 79; GHz; automotive radar; deep learning; occupancy grid; semantic segmentation;
D O I
10.1109/ACCESS.2020.3032034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Radar sensors have great advantages over other sensors in estimating the motion states of moving objects, because they detect velocity components within one measurement cycle. Moreover, numerous successes have already been achieved regarding the classification of such objects. However, the advantage of instantaneous velocity measurement is lost when detecting static objects, so that their classification is much more demanding. In this paper, we use semantic segmentation networks to distinguish between frequently occurring infrastructure objects. The resulting semantic grids provide a location-based classification of the vehicle environment. Since even modern radars have a significantly poorer angular resolution than lidars, the relatively thin radar point cloud is accumulated in advance and transformed into 2D or 3D grids that act as network inputs. Occupancy grids are particularly advantageous here, since they calculate not only the obstacles but also the free spaces. With suitable parameter selection, which is very challenging due to the complexity of radar measurement, the resulting grids allow for good association with camera images. Finally, in order to evaluate possible advantages of 3D grids as network input with respect to the segmentation result, we created and evaluated a simulation dataset and two different real-world datasets in car parks and on motorways. As a result, Jaccard coefficients between 81% and 88% were achieved, depending on the dataset. It was also found that 3D input images lead to improvements in the car park dataset.
引用
收藏
页码:197917 / 197930
页数:14
相关论文
共 50 条
[21]   3D Guided Weakly Supervised Semantic Segmentation [J].
Sun, Weixuan ;
Zhang, Jing ;
Barnes, Nick .
COMPUTER VISION - ACCV 2020, PT I, 2021, 12622 :585-602
[22]   3D video semantic segmentation for wildfire smoke [J].
Zhu, Guodong ;
Chen, Zhenxue ;
Liu, Chengyun ;
Rong, Xuewen ;
He, Weikai .
MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
[23]   Joint 2D and 3D Semantic Segmentation with Consistent Instance Semantic [J].
Wan, Yingcai ;
Fang, Lijin .
IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107A (08) :1309-1318
[24]   Radar-Camera Fusion for Object Detection and Semantic Segmentation in Autonomous Driving: A Comprehensive Review [J].
Yao, Shanliang ;
Guan, Runwei ;
Huang, Xiaoyu ;
Li, Zhuoxiao ;
Sha, Xiangyu ;
Yue, Yong ;
Lim, Eng Gee ;
Seo, Hyungjoon ;
Man, Ka Lok ;
Zhu, Xiaohui ;
Yue, Yutao .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01) :2094-2128
[25]   Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation [J].
Xie, Yuxing ;
Tian, Jiaojiao ;
Zhu, Xiao Xiang .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2020, 8 (04) :38-59
[26]   Semantic segmentation of 3D point cloud based on contextual attention CNN [J].
Yang J. ;
Dang J. .
Tongxin Xuebao/Journal on Communications, 2020, 41 (07) :195-203
[27]   Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation [J].
Alalwan, Nasser ;
Abozeid, Amr ;
ElHabshy, AbdAllah A. ;
Alzahrani, Ahmed .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) :1231-1239
[28]   AlignFusionNet: Efficient Cross-Modal Alignment and Fusion for 3D Semantic Occupancy Prediction [J].
Xu, Ziyi ;
Qi, Legan ;
Du, Hongzhou ;
Yang, Jiaqi ;
Chen, Zhenglin .
IEEE ACCESS, 2025, 13 :125003-125015
[29]   EPMF: Efficient Perception-Aware Multi-Sensor Fusion for 3D Semantic Segmentation [J].
Tan, Mingkui ;
Zhuang, Zhuangwei ;
Chen, Sitao ;
Li, Rong ;
Jia, Kui ;
Wang, Qicheng ;
Li, Yuanqing .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) :8258-8273
[30]   Improving Semantic Segmentation of 3D Medical Images on 3D Convolutional Neural Networks [J].
Marquez Herrera, Alejandra ;
Cuadros-Vargas, Alex J. ;
Pedrini, Helio .
2019 XLV LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2019), 2019,