PROJECTION LATERAL BANDS AND LATERAL RETRACTS

被引:5
作者
Kaminska, A. [1 ]
Krasikova, I. [2 ]
Popov, M. [1 ,3 ]
机构
[1] Pomeranian Univ Slupsk, Inst Exact & Tech Sci, PL-76200 Slupsk, Poland
[2] Zaporizhzhya Natl Univ, 66 Zukovskoho str, UA-69600 Zaporizhzhya, Ukraine
[3] Vasyl Stefanyk Precarpathian Natl Univ, 57 Shevchenka Str, UA-76018 Ivano Frankivsk, Ukraine
关键词
orthogonally additive operator; Riesz space; lateral band;
D O I
10.15330/cmp.12.2.333-339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A projection lateral band G in a Riesz space E is defined to be a lateral band which is the image of an orthogonally additive projection Q : E -> E possessing the property that Q(x) is a fragment of x for all x is an element of E, called a lateral retraction of E onto G (which is then proved to be unique). We investigate properties of lateral retracts, that are, images of lateral retractions, and describe lateral retractions onto principal projection lateral bands (i.e. lateral bands generated by single elements) in a Riesz space with the principal projection property. Moreover, we prove that every lateral retract is a lateral band, and every lateral band in a Dedekind complete Riesz space is a projection lateral band.
引用
收藏
页码:333 / 339
页数:7
相关论文
共 9 条
  • [1] Aliprantis C. D., 2006, POSITIVE OPERATORS
  • [2] [Anonymous], PREPRINT
  • [3] LATERAL CONTINUITY AND ORTHOGONALLY ADDITIVE OPERATORS
    Gumenchuk, A., I
    [J]. CARPATHIAN MATHEMATICAL PUBLICATIONS, 2015, 7 (01) : 49 - 56
  • [4] Gumenchuk AV., 2014, MAT STUD, V41, P214
  • [5] Mazn JM., 1990, Rev. Roum. Math. Pures Appl, V35, P431
  • [6] Mazon J.M., 1990, Rev. Roumane Math. Pures Appl., V35, P329
  • [7] Pliev MA, 2016, SIB MAT ZH, V57, P700
  • [8] Order Unbounded Orthogonally Additive Operators in Vector Lattices
    Pliev, Marat
    Ramdane, Kawtar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [9] Narrow orthogonally additive operators
    Pliev, Marat
    Popov, Mikhail
    [J]. POSITIVITY, 2014, 18 (04) : 641 - 667