Mathisson-Papapetrou-Tulczyjew-Dixon equations in ultra-relativistic regime and gravimagnetic moment

被引:31
作者
Deriglazov, Alexei A. [1 ,2 ]
Ramirez, Walberto Guzman [1 ]
机构
[1] Univ Fed Juiz de Fora, ICE, Dept Matemat, Juiz De Fora, MG, Brazil
[2] Tomsk Polytech Univ, Lab Math Phys, Lenin Ave 30, Tomsk 634050, Russia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2017年 / 26卷 / 06期
关键词
Spinning particle; ultra-relativistic motion; gravimagnetic moment; SPIN; PARTICLES; BODIES; MOTION;
D O I
10.1142/S021827181750047X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations in the Lagrangian formulation correspond to the minimal interaction of spin with gravity. Due to the interaction, in the Lagrangian equations instead of the original metric g emerges spin-dependent effective metric G = g + h(S). So we need to decide, which of them the MPTD particle sees as the spacetime metric. We show that the MPTD equations, if considered with respect to the original metric (using the standard Landau-Lifshitz spacetime decomposition), have unexpected behavior: the acceleration in the direction of the velocity grows up to infinity in the ultra-relativistic limit. If considered with respect to G, the theory does not have this problem. But the metric now depends on spin, so there is no unique spacetime manifold for the universe of spinning particles: each particle probes its own three-dimensional (3D) geometry. This can be improved by adding a nonminimal interaction, given the modified MPTD equations with reasonable behavior within the original metric.
引用
收藏
页数:12
相关论文
共 33 条
[1]  
[Anonymous], CLASSICAL THEORY FIE
[2]  
[Anonymous], ARXIV160105809
[3]  
[Anonymous], LECT NOTES PHYS
[4]  
Barut A.O, 1980, Theory of Group Representations and Applications
[5]   GRAVITATIONAL-RADIATION DAMPING OF COMPACT BINARY-SYSTEMS TO 2ND POST-NEWTONIAN ORDER [J].
BLANCHET, L ;
DAMOUR, T ;
IYER, BR ;
WILL, CM ;
WISEMAN, AG .
PHYSICAL REVIEW LETTERS, 1995, 74 (18) :3515-3518
[6]  
Costa L. F. O., 2015, Fund. Theor. Phys., V179, P215
[7]   Spacetime dynamics of spinning particles: Exact electromagnetic analogies [J].
Costa, L. Filipe O. ;
Natario, Jose ;
Zilhao, Miguel .
PHYSICAL REVIEW D, 2016, 93 (10)
[8]   Covariant hamiltonian spin dynamics in curved space-time [J].
d'Ambrosi, G. ;
Kumar, S. Satish ;
van Holten, J. W. .
PHYSICS LETTERS B, 2015, 743 :478-483
[9]   World-line geometry probed by fast spinning particle [J].
Deriglazov, Alexei A. ;
Ramirez, Walberto Guzman .
MODERN PHYSICS LETTERS A, 2015, 30 (21)
[10]   Lagrangian for Frenkel electron and position's non-commutativity due to spin [J].
Deriglazov, Alexei A. ;
Pupasov-Maksimov, Andrey M. .
EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (10) :1-18