Structural formation and charge storage mechanisms for intercalated two-dimensional carbides MXenes

被引:21
作者
Wen, Jing [1 ]
Zhang, Xitian [1 ]
Gao, Hong [1 ]
机构
[1] Harbin Normal Univ, Sch Phys & Elect Engn, Minist Educ, Key Lab Photon & Elect Bandgap Mat, Harbin 150025, Peoples R China
关键词
TRANSITION-METAL CARBIDES; LITHIUM-ION BATTERIES; HIGH VOLUMETRIC CAPACITANCE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TITANIUM CARBIDE; TI3C2; MXENE; SURFACE FUNCTIONALIZATION; ELECTRONIC-PROPERTIES; M(N+1)AX(N) PHASES;
D O I
10.1039/c7cp00670e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although many studies have been focused on the characterization of MXenes, surface structures and formation mechanisms in terms of their experimental processes still remain controversial. Herein, we systematically investigated the structures formed from MX intercalated with different atoms from group IA to VIIA (A = H, Li, Na, K, Mg, Al, Si, P, O, S, F, and Cl) at different sites. An effective procedure based on first- principles calculations was developed to reveal the formation mechanisms of MAX, MXA(2), MXTx, and MXT(x)A(x') structures. The competition and matching mechanisms were introduced to determine the formation probabilities of the MAX phase. The transformation processes from MAX to MXA(2) have been correlated with the energies and configurations of the transformed MX and the chemical potential of the A atom in terms of the experimental processes. The structure of MXTx obtained using different methods has been formulated as a function of the experimental conditions and the c lattice parameter. The experimental results can be well explained based on these results. As a representative, it was proved that the capacity of Ti(3)C(2)T(x)A(x') (A = Li) depends on the c lattice parameter and the calculated allowable value can range from 130.3 mA h g(-1) (Ti3C2F2Li) to 536.8 mA h g(-1) (Ti3C2O2Li4). A higher value can be expected if the sample with a suitable c-axis value can be obtained. Energy storage mechanism should be classified into a double-layer capacitance process in the Ti3C2F2 units and a redox storage mechanism in the Ti3C2O2 units. The procedure can be employed to optimize the structures and compositions of the MXenes.
引用
收藏
页码:9509 / 9518
页数:10
相关论文
共 50 条
  • [21] Two-dimensional MXenes for flexible energy storage devices
    An, Yongling
    Tian, Yuan
    Shen, Hengtao
    Man, Quanyan
    Xiong, Shenglin
    Feng, Jinkui
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (10) : 4191 - 4250
  • [22] Energy band gaps and novel thermoelectric properties of two-dimensional functionalized Yttrium carbides (MXenes)
    Omugbe, E.
    Osafile, O. E.
    Nenuwe, O. N.
    Enaibe, E. A.
    PHYSICA B-CONDENSED MATTER, 2022, 639
  • [23] Recent advances in two-dimensional MXenes for power and smart energy systems
    Thakur, Nikhil
    Kumar, Pawan
    Sati, Dinesh C.
    Neffati, R.
    Sharma, Pankaj
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [24] Fermiology of two-dimensional titanium carbide and nitride MXenes
    Bagheri, Mohammad
    Ibragimova, Rina
    Komsa, Hannu-Pekka
    PHYSICAL REVIEW B, 2021, 104 (03)
  • [25] Two-dimensional MXenes for lithium-sulfur batteries
    Zhang, Chuanfang
    Cui, Linfan
    Abdolhosseinzadeh, Sina
    Heier, Jakob
    INFOMAT, 2020, 2 (04) : 613 - 638
  • [26] Interfacial assembly of two-dimensional MXenes
    Zhang, Chuanfang
    JOURNAL OF ENERGY CHEMISTRY, 2021, 60 : 417 - 434
  • [27] Theoretical Studies of Lithium Storage Properties of Novel Two-Dimensional Carbides
    Chen Jin-Feng
    Hu Qian-Ku
    Zhou Ai-Guo
    Sun Dan-Dan
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (12) : 2278 - 2284
  • [28] Structural stability and electronic properties of multi-functionalized two-dimensional chromium carbides
    Je, Minyeong
    Lee, Youngbin
    Chung, Yong-Chae
    THIN SOLID FILMS, 2016, 619 : 131 - 136
  • [29] Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity
    Handoko, Albertus D.
    Fredrickson, Kurt D.
    Anasori, Babak
    Convey, Kurt W.
    Johnson, Luke R.
    Gogotsi, Yury
    Vojvodic, Aleksandra
    Seh, Zhi Wei
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (01): : 173 - 180
  • [30] Understanding Chemistry of Two-Dimensional Transition Metal Carbides and Carbonitrides (MXenes) with Gas Analysis
    Huang, Shuohan
    Mochalin, Vadym N.
    ACS NANO, 2020, 14 (08) : 10251 - 10257