NUMBER OF SINGULARITIES OF STABLE MAPS ON SURFACES

被引:1
作者
Yamamoto, Takahiro [1 ]
机构
[1] Kyushu Sangyo Univ, Fac Engn, Higashi Ku, 3-1 Matsukadai 2 Chome, Fukuoka 8138503, Japan
关键词
stable map; cusp; node;
D O I
10.2140/pjm.2016.280.489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N denote the plane R-2 or the 2-sphere S-2. In this paper, we determine the 5-tuples of integers (g, d, i, c, n) such that there exists a degree d stable map Sigma(g) -> N whose singular point set consists of i connected components, c cusps, and n nodes, where Sigma(g) is the standard genus g surface.
引用
收藏
页码:489 / 510
页数:22
相关论文
共 10 条
[1]  
Demoto S., 2005, HIROSHIMA MATH J, V35, P93
[2]  
ELIASHBERG Y, 1970, IZV AKAD NAUK SSSR M, V34, P1110
[3]   APPARENT CONTOURS OF STABLE MAPS INTO THE SPHERE [J].
Fukuda, Taishi ;
Yamamoto, Takahiro .
JOURNAL OF SINGULARITIES, 2011, 3 :113-125
[4]   The minimal number of singularities of stable maps between surfaces [J].
Kamenosono, Atsushi ;
Yamamoto, Takahiro .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (14) :2390-2405
[5]   PROJECTIONS OF SURFACES WITH A CONNECTED FOLD CURVE [J].
PIGNONI, R .
TOPOLOGY AND ITS APPLICATIONS, 1993, 49 (01) :55-74
[8]  
WHITNEY H., 1941, B AM MATH SOC, V47, P145, DOI DOI 10.1090/S0002-9904-1941-07395-7
[9]  
Yamamoto M, 2009, HOUSTON J MATH, V35, P1051
[10]   APPARENT CONTOURS WITH MINIMAL NUMBER OF SINGULARITIES [J].
Yamamoto, Takahiro .
KYUSHU JOURNAL OF MATHEMATICS, 2010, 64 (01) :1-16