Numerical analysis of a nonlinear time relaxation model of fluids

被引:6
作者
Dunca, Argus A. [1 ]
Neda, Monika [2 ]
机构
[1] Spiru Haret Univ, Dept Math & Comp Sci, Bucharest 030045, Romania
[2] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Time relaxation; Deconvolution; Finite element; LARGE-EDDY SIMULATION; DECONVOLUTION MODEL; MAXIMUM-NORM; STABILITY; ERROR;
D O I
10.1016/j.jmaa.2014.06.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This report investigates a time relaxation model for the regularization of the strong solution of the Navier-Stokes equations. Following the earlier works of Adams, Stolz and Kleiser [37,38], Ervin, Layton and Neda [11], Layton and Neda [26], the nonlinear term investigated herein aims to better control the generalized turbulent fluctuations, thus providing better stabilization effect on the underlying model. We study the numerical properties of the resulting model and prove that the addition of the nonlinear term does not affect the overall order of convergence to the strong solution of the Navier Stokes equation. Our theoretical results based on the finite element method are confirmed by the numerical tests performed in the last section of the paper. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1095 / 1115
页数:21
相关论文
共 44 条
  • [1] [Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
  • [2] [Anonymous], PHYS FLUIDS
  • [3] Baker G.A., 1976, Galerkin Approximations for the Navier-Stokes Equations
  • [4] Berselli LC, 2006, SCI COMPUT, P1
  • [5] SOME ESTIMATES FOR A WEIGHTED L2 PROJECTION
    BRAMBLE, JH
    XU, JC
    [J]. MATHEMATICS OF COMPUTATION, 1991, 56 (194) : 463 - 476
  • [6] CIARLET P. G., 2002, Classics in Appl. Math., V40
  • [7] Connors J, 2010, MATH COMPUT, V79, P619, DOI 10.1090/S0025-5718-09-02316-3
  • [8] THE STABILITY IN LP AND W-P-1 OF THE L2-PROJECTION ONTO FINITE-ELEMENT FUNCTION-SPACES
    CROUZEIX, M
    THOMEE, V
    [J]. MATHEMATICS OF COMPUTATION, 1987, 48 (178) : 521 - 532
  • [9] Crouzeix M., 2001, Computational Methods in Applied Mathematics, V1, DOI 10.2478/cmam-2001-0001
  • [10] Numerical analysis and computations of a high accuracy time relaxation fluid flow model
    De, Shipra
    Hannasch, David
    Neda, Monika
    Nikonova, Elena
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (17) : 2353 - 2373