n-Dimensional Fano varieties of wild representation type

被引:22
作者
Miro-Roig, Rosa M. [1 ]
Pons-Llopis, Joan [2 ]
机构
[1] Fac Matemat, Dept Algebra & Geometria, Barcelona 08007, Spain
[2] Univ Pau & Pays Adour, F-64012 Pau, France
关键词
MINIMAL RESOLUTION CONJECTURE; COHEN-MACAULAY MODULES; STABLE BUNDLES; POINTS; CLASSIFICATION; SYSTEMS; RINGS;
D O I
10.1016/j.jpaa.2014.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to contribute to the classification of projective varieties according to their representation type, providing examples of n-dimensional varieties of wild representation type, for arbitrary n >= 2. More precisely, we prove that all Fano blow-ups of P-n at a finite number of points are of wild representation type exhibiting families of dimension of order r(2) of simple (hence, indecomposable) ACM rank r vector bundles for any r >= n. In the two dimensional case, the vector bundles that we construct are moreover Ulrich bundles and mu-stable with respect to certain ample divisor. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1867 / 1884
页数:18
相关论文
共 33 条
  • [11] The representation type of Segre varieties
    Costa, Laura
    Miro-Roig, Rosa M.
    Pons-Llopis, Joan
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1995 - 2013
  • [12] Dionisi C, 2003, BOLL UNIONE MAT ITAL, V6B, P151
  • [13] Dolgachev I., 2012, TOPICS CLASSICAL ALG
  • [14] DREZET JM, 1985, ANN SCI ECOLE NORM S, V18, P193
  • [15] Tame and wild projective curves and classification of vector bundles
    Drozd, YA
    Greuel, GM
    [J]. JOURNAL OF ALGEBRA, 2001, 246 (01) : 1 - 54
  • [16] Resultants and Chow forms via exterior syzygies
    Eisenbud, D
    Schreyer, FO
    Weyman, J
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 537 - 579
  • [17] THE CLASSIFICATION OF HOMOGENEOUS COHEN-MACAULAY RINGS OF FINITE REPRESENTATION TYPE
    EISENBUD, D
    HERZOG, J
    [J]. MATHEMATISCHE ANNALEN, 1988, 280 (02) : 347 - 352
  • [18] Ellia Ph., 1992, J. Algebraic Geom., V1, P531
  • [19] Divisors on Mg,g+1 and the Minimal Resolution Conjecture for points on canonical curves
    Farkas, G
    Mustata, M
    Popa, M
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (04): : 553 - 581
  • [20] Hartshorne R., 1977, Algebraic geometry, Graduate Texts in Mathematics, pxvi