n-Dimensional Fano varieties of wild representation type

被引:22
作者
Miro-Roig, Rosa M. [1 ]
Pons-Llopis, Joan [2 ]
机构
[1] Fac Matemat, Dept Algebra & Geometria, Barcelona 08007, Spain
[2] Univ Pau & Pays Adour, F-64012 Pau, France
关键词
MINIMAL RESOLUTION CONJECTURE; COHEN-MACAULAY MODULES; STABLE BUNDLES; POINTS; CLASSIFICATION; SYSTEMS; RINGS;
D O I
10.1016/j.jpaa.2014.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to contribute to the classification of projective varieties according to their representation type, providing examples of n-dimensional varieties of wild representation type, for arbitrary n >= 2. More precisely, we prove that all Fano blow-ups of P-n at a finite number of points are of wild representation type exhibiting families of dimension of order r(2) of simple (hence, indecomposable) ACM rank r vector bundles for any r >= n. In the two dimensional case, the vector bundles that we construct are moreover Ulrich bundles and mu-stable with respect to certain ample divisor. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1867 / 1884
页数:18
相关论文
共 33 条
[1]  
[Anonymous], PRAGMAT MATH S
[2]  
[Anonymous], 1980, "Seminaire sur les Singularites des Surfaces"
[3]  
Aprodu M., ARXIV 1212 6248
[4]   Toric varieties whose blow-up at a point is Fano [J].
Bonavero, L .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (04) :593-597
[5]   COHEN-MACAULAY MODULES ON HYPERSURFACE SINGULARITIES .2. [J].
BUCHWEITZ, RO ;
GREUEL, GM ;
SCHREYER, FO .
INVENTIONES MATHEMATICAE, 1987, 88 (01) :165-182
[6]   STABLE ULRICH BUNDLES [J].
Casanellas, Marta ;
Hartshorne, Robin ;
Geiss, Florian ;
Schreyer, Frank-Olaf .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (08)
[7]   ACM bundles on cubic surfaces [J].
Casanellas, Marta ;
Hartshorne, Robin .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) :709-731
[8]   Very ample linear systems on blowings-up at general points of projective spaces [J].
Coppens, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (03) :349-354
[9]  
Coskun E, 2012, DOC MATH, V17, P1003
[10]   The geometry of Ulrich bundles on del Pezzo surfaces [J].
Coskun, Emre ;
Kulkarni, Rajesh S. ;
Mustopa, Yusuf .
JOURNAL OF ALGEBRA, 2013, 375 :280-301