n-Dimensional Fano varieties of wild representation type

被引:22
作者
Miro-Roig, Rosa M. [1 ]
Pons-Llopis, Joan [2 ]
机构
[1] Fac Matemat, Dept Algebra & Geometria, Barcelona 08007, Spain
[2] Univ Pau & Pays Adour, F-64012 Pau, France
关键词
MINIMAL RESOLUTION CONJECTURE; COHEN-MACAULAY MODULES; STABLE BUNDLES; POINTS; CLASSIFICATION; SYSTEMS; RINGS;
D O I
10.1016/j.jpaa.2014.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to contribute to the classification of projective varieties according to their representation type, providing examples of n-dimensional varieties of wild representation type, for arbitrary n >= 2. More precisely, we prove that all Fano blow-ups of P-n at a finite number of points are of wild representation type exhibiting families of dimension of order r(2) of simple (hence, indecomposable) ACM rank r vector bundles for any r >= n. In the two dimensional case, the vector bundles that we construct are moreover Ulrich bundles and mu-stable with respect to certain ample divisor. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1867 / 1884
页数:18
相关论文
共 33 条
  • [1] [Anonymous], PRAGMAT MATH S
  • [2] [Anonymous], 1980, "Seminaire sur les Singularites des Surfaces"
  • [3] Aprodu M., ARXIV 1212 6248
  • [4] Toric varieties whose blow-up at a point is Fano
    Bonavero, L
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (04) : 593 - 597
  • [5] COHEN-MACAULAY MODULES ON HYPERSURFACE SINGULARITIES .2.
    BUCHWEITZ, RO
    GREUEL, GM
    SCHREYER, FO
    [J]. INVENTIONES MATHEMATICAE, 1987, 88 (01) : 165 - 182
  • [6] STABLE ULRICH BUNDLES
    Casanellas, Marta
    Hartshorne, Robin
    Geiss, Florian
    Schreyer, Frank-Olaf
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (08)
  • [7] ACM bundles on cubic surfaces
    Casanellas, Marta
    Hartshorne, Robin
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) : 709 - 731
  • [8] Very ample linear systems on blowings-up at general points of projective spaces
    Coppens, M
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (03): : 349 - 354
  • [9] Coskun E, 2012, DOC MATH, V17, P1003
  • [10] The geometry of Ulrich bundles on del Pezzo surfaces
    Coskun, Emre
    Kulkarni, Rajesh S.
    Mustopa, Yusuf
    [J]. JOURNAL OF ALGEBRA, 2013, 375 : 280 - 301