Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model

被引:55
作者
Carmagnola, C. M. [1 ]
Morin, S. [1 ]
Lafaysse, M. [1 ]
Domine, F. [2 ,3 ]
Lesaffre, B. [1 ]
Lejeune, Y. [1 ]
Picard, G. [4 ]
Arnaud, L. [4 ]
机构
[1] Ctr Etud Neige, CNRM GAME UMR3589, Meteo France CNRS, Grenoble, France
[2] CNRS, Takuvik Joint Int Lab, Quebec City, PQ, Canada
[3] Univ Laval, Quebec City, PQ, Canada
[4] UJF Grenoble, LGGE, CNRS, Grenoble, France
基金
美国国家科学基金会;
关键词
SURFACE-AREA; INFRARED REFLECTANCE; SPECTRAL ALBEDO; MASS-BALANCE; TEMPERATURE; SUMMIT; METAMORPHISM; SIMULATION; EVOLUTION; ENERGY;
D O I
10.5194/tc-8-417-2014
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In the SURFEX/ISBA-Crocus multi-layer snowpack model, the snow microstructure has up to now been characterised by the grain size and by semi-empirical shape variables which cannot be measured easily in the field or linked to other relevant snow properties. In this work we introduce a new formulation of snow metamorphism directly based on equations describing the rate of change of the optical diameter (d(opt)). This variable is considered here to be equal to the equivalent sphere optical diameter, which is inversely proportional to the specific surface area (SSA). d(opt) thus represents quantitatively some of the geometric characteristics of a porous medium. Different prognostic rate equations of d(opt), including a re-formulation of the original Crocus scheme and the parameterisations from Taillandier et al. (2007) and Flanner and Zender (2006), were evaluated by comparing their predictions to field measurements carried out at Summit Camp (Greenland) in May and June 2011 and at Col de Porte (French Alps) during the 2009/10 and 2011/12 winter seasons. We focused especially on results in terms of SSA. In addition, we tested the impact of the different formulations on the simulated density profile, the total snow height, the snow water equivalent (SWE) and the surface albedo. Results indicate that all formulations perform well, with median values of the RMSD between measured and simulated SSA lower than 10 m(2) kg(-1). Incorporating the optical diameter as a fully fledged prognostic variable is an important step forward in the quantitative description of the snow microstructure within snowpack models, because it opens the way to data assimilation of various electromagnetic observations.
引用
收藏
页码:417 / 437
页数:21
相关论文
共 66 条
[41]   A physical SNOWPACK model for the Swiss avalanche warning Part II: Snow microstructure [J].
Lehning, M ;
Bartelt, P ;
Brown, B ;
Fierz, C ;
Satyawali, P .
COLD REGIONS SCIENCE AND TECHNOLOGY, 2002, 35 (03) :147-167
[42]   Objective determination of snow-grain characteristics from images [J].
Lesaffre, B ;
Pougatch, E ;
Martin, E .
ANNALS OF GLACIOLOGY, VOL 26, 1998, 1998, 26 :112-118
[43]   Influence of grain shape on light penetration in snow [J].
Libois, Q. ;
Picard, G. ;
France, J. L. ;
Arnaud, L. ;
Dumont, M. ;
Carmagnola, C. M. ;
King, M. D. .
CRYOSPHERE, 2013, 7 (06) :1803-1818
[44]   Interfacial and structural relaxations of snow under isothermal conditions [J].
Loewe, H. ;
Spiegel, J. K. ;
Schneebeli, M. .
JOURNAL OF GLACIOLOGY, 2011, 57 (203) :499-510
[45]   AN EXPERIMENTAL-STUDY OF TEMPERATURE-GRADIENT METAMORPHISM [J].
MARBOUTY, D .
JOURNAL OF GLACIOLOGY, 1980, 26 (94) :303-312
[46]   Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model [J].
Mary, A. ;
Dumont, M. ;
Dedieu, J. -P. ;
Durand, Y. ;
Sirguey, P. ;
Milhem, H. ;
Mestre, O. ;
Negi, H. S. ;
Kokhanovsky, A. A. ;
Lafaysse, M. ;
Morin, S. .
CRYOSPHERE, 2013, 7 (02) :741-761
[47]   The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes [J].
Masson, V. ;
Le Moigne, P. ;
Martin, E. ;
Faroux, S. ;
Alias, A. ;
Alkama, R. ;
Belamari, S. ;
Barbu, A. ;
Boone, A. ;
Bouyssel, F. ;
Brousseau, P. ;
Brun, E. ;
Calvet, J. -C. ;
Carrer, D. ;
Decharme, B. ;
Delire, C. ;
Donier, S. ;
Essaouini, K. ;
Gibelin, A. -L. ;
Giordani, H. ;
Habets, F. ;
Jidane, M. ;
Kerdraon, G. ;
Kourzeneva, E. ;
Lafaysse, M. ;
Lafont, S. ;
Brossier, C. Lebeaupin ;
Lemonsu, A. ;
Mahfouf, J. -F. ;
Marguinaud, P. ;
Mokhtari, M. ;
Morin, S. ;
Pigeon, G. ;
Salgado, R. ;
Seity, Y. ;
Taillefer, F. ;
Tanguy, G. ;
Tulet, P. ;
Vincendon, B. ;
Vionnet, V. ;
Voldoire, A. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (04) :929-960
[48]   Measuring specific surface area of snow by near-infrared photography [J].
Matzl, Margret ;
Schneebeli, Martin .
JOURNAL OF GLACIOLOGY, 2006, 52 (179) :558-564
[49]   Measurements and model calculations of the solar shortwave fluxes in snow on Summit, Greenland [J].
Meirold-Mautner, I ;
Lehning, M .
ANNALS OF GLACIOLOGY, VOL 38, 2004, 2004, 38 :279-284
[50]   An 18-yr long (1993-2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325m alt.) for driving and evaluating snowpack models [J].
Morin, S. ;
Lejeune, Y. ;
Lesaffre, B. ;
Panel, J-M ;
Poncet, D. ;
David, P. ;
Sudul, M. .
EARTH SYSTEM SCIENCE DATA, 2012, 4 (01) :13-21