Urine fluorescence spectroscopy combined with machine learning for screening of hepatocellular carcinoma and liver cirrhosis

被引:13
作者
Dou, Jingrui [1 ,2 ]
Dawuti, Wubulitalifu [1 ,2 ]
Zheng, Xiangxiang [3 ]
Zhang, Rui [1 ,2 ]
Zhou, Jing [1 ,4 ]
Lin, Renyong [1 ]
Lu, Guodong [1 ]
机构
[1] Xinjiang Med Univ, Clin Med Res Inst, Affiliated Hosp 1, State Key Lab Pathogenesis Prevent & Treatment Ce, 137 Liyushan South Rd, Urumqi 830054, Peoples R China
[2] Xinjiang Med Univ, Sch Publ Hlth, Urumqi 830054, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[4] Xinjiang Med Univ, Coll Pharm, Urumqi 830054, Peoples R China
关键词
Fluorescence spectroscopy; Urine; Hepatocellular carcinoma (HCC); Liver cirrhosis; Screening; Support vector machine (SVM); CANCER; DIAGNOSIS; BIOMARKERS;
D O I
10.1016/j.pdpdt.2022.103102
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In this paper, we investigated the possibility of using urine fluorescence spectroscopy and machine learning method to identify hepatocellular carcinoma (HCC) and liver cirrhosis from healthy people. Urine fluorescence spectra of HCC (n = 62), liver cirrhosis (n = 65) and normal people (n = 60) were recorded at 405 nm excitation using a Fluorescent scan multimode reader. The normalized fluorescence spectra revealed endogenous metabolites differences associated with the disease, mainly the abnormal metabolism of porphyrin derivatives and bilirubin in the urine of patients with HCC and liver cirrhosis compared to normal people. The Support vector machine (SVM) algorithm was used to differentiate the urine fluorescence spectra of the HCC, liver cirrhosis and normal groups, and its overall diagnostic accuracy was 83.42%, the sensitivity for HCC and liver cirrhosis were 93.55% and 73.85%, and the specificity for HCC and liver cirrhosis were 88.00% and 89.34%, respectively. This exploratory work shown that the combination of urine fluorescence spectroscopy and SVM algorithm has great potential for the noninvasive screening of HCC and liver cirrhosis.
引用
收藏
页数:5
相关论文
共 37 条
[1]   Diagnosis of Liver Cancer and Cirrhosis by the Fluorescence Spectra of Blood and Urine [J].
AlSalhi, M. ;
Al Mehmadi, A. M. ;
Abdo, Ayman Assad ;
Prasad, S. ;
Masilamani, V. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2012, 11 (04) :345-351
[2]   Rapid diagnostic assay for detection of cellulose in urine as biomarker for biofilm-related urinary tract infections [J].
Antypas, Haris ;
Choong, Ferdinand X. ;
Libberton, Ben ;
Braunerz, Annelie ;
Richter-Dahlfors, Agneta .
NPJ BIOFILMS AND MICROBIOMES, 2018, 4
[3]   Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis [J].
Asri, Hiba ;
Mousannif, Hajar ;
Al Moatassime, Hassan ;
Noel, Thomas .
7TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2016) / THE 6TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2016) / AFFILIATED WORKSHOPS, 2016, 83 :1064-1069
[4]   A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine [J].
Atif, M. ;
Alsalhi, M. S. ;
Devanesan, S. ;
Masilamani, V ;
Farhat, K. ;
Rabah, D. .
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2018, 23 :40-44
[5]   Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra [J].
Barton, Sinead ;
Alakkari, Salaheddin ;
O'Dwyer, Kevin ;
Ward, Tomas ;
Hennelly, Bryan .
SENSORS, 2021, 21 (14)
[6]   Development of a nomogram to predict outcome after liver resection for hepatocellular carcinoma in Child-Pugh B cirrhosis [J].
Berardi, Giammauro ;
Morise, Zenichi ;
Sposito, Carlo ;
Igarashi, Kazuharu ;
Panetta, Valentina ;
Simonelli, Ilaria ;
Kim, Sungho ;
Goh, Brian K. P. ;
Kubo, Shoji ;
Tanaka, Shogo ;
Takeda, Yutaka ;
Ettorre, Giuseppe Maria ;
Wilson, Gregory C. ;
Cimino, Matteo ;
Chan, Chung-Yip ;
Torzilli, Guido ;
Cheung, Tan To ;
Kaneko, Hironori ;
Mazzaferro, Vincenzo ;
Geller, David A. ;
Han, Ho-Seong ;
Kanazawa, Akishige ;
Wakabayashi, Go ;
Troisi, Roberto Ivan .
JOURNAL OF HEPATOLOGY, 2020, 72 (01) :75-84
[7]   Human fluorescent profile of urine as a simple tool of mining in data from autofluorescence spectroscopy [J].
Birkova, Anna ;
Oboril, Julius ;
Kreta, Richard ;
Cizmarova, Beata ;
Hubkova, Beata ;
Steffekova, Zuzana ;
Genci, Jan ;
Paralic, Jan ;
Marekova, Maria .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 56
[8]   Synergy Effect of Combining Fluorescence and Mid Infrared Fiber Spectroscopy for Kidney Tumor Diagnostics [J].
Bogomolov, Andrey ;
Belikova, Valeria ;
Zabarylo, Urszula J. ;
Bibikova, Olga ;
Usenov, Iskander ;
Sakharova, Tatiana ;
Krause, Hans ;
Minet, Olaf ;
Feliksberger, Elena ;
Artyushenko, Viacheslav .
SENSORS, 2017, 17 (11)
[9]   Combined fluorescence-Raman spectroscopic setup for the diagnosis of melanocytic lesions [J].
Cicchi, Riccardo ;
Cosci, Alessandro ;
Rossari, Susanna ;
Kapsokalyvas, Dimitrios ;
Baria, Enrico ;
Maio, Vincenza ;
Massi, Daniela ;
De Giorgi, Vincenzo ;
Pimpinelli, Nicola ;
Pavone, Francesco Saverio .
JOURNAL OF BIOPHOTONICS, 2014, 7 (1-2) :86-95
[10]   Fluorescence excitation properties of bilirubin in solution and in serum [J].
Croce, Anna C. ;
Ferrigno, Andrea ;
Bottiroli, Giovanni ;
Di Pasqua, Laura G. ;
Berardo, Clarissa ;
Vairetti, Mariapia .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2021, 215