Applications and Techniques for Fast Machine Learning in Science

被引:28
|
作者
Deiana, Allison McCarn [1 ]
Tran, Nhan [2 ,3 ]
Agar, Joshua [4 ]
Blott, Michaela [5 ]
Di Guglielmo, Giuseppe [6 ]
Duarte, Javier [7 ]
Harris, Philip [8 ]
Hauck, Scott [9 ]
Liu, Mia [10 ]
Neubauer, Mark S. [11 ]
Ngadiuba, Jennifer [2 ]
Ogrenci-Memik, Seda [3 ]
Pierini, Maurizio [12 ]
Aarrestad, Thea [12 ]
Baehr, Steffen [13 ]
Becker, Juergen [13 ]
Berthold, Anne-Sophie [14 ]
Bonventre, Richard J. [15 ]
Bravo, Tomas E. Muller [16 ]
Diefenthaler, Markus [17 ]
Dong, Zhen [18 ]
Fritzsche, Nick [19 ]
Gholami, Amir [18 ]
Govorkova, Ekaterina [12 ]
Guo, Dongning [3 ]
Hazelwood, Kyle J. [2 ]
Herwig, Christian [2 ]
Khan, Babar [20 ]
Kim, Sehoon [18 ]
Klijnsma, Thomas [2 ]
Liu, Yaling [21 ]
Lo, Kin Ho [22 ]
Nguyen, Tri [8 ]
Pezzullo, Gianantonio [23 ]
Rasoulinezhad, Seyedramin [24 ]
Rivera, Ryan A. [2 ]
Scholberg, Kate [25 ]
Selig, Justin [14 ]
Sen, Sougata [26 ]
Strukov, Dmitri [27 ]
Tang, William [28 ]
Thais, Savannah [28 ]
Unger, Kai Lukas [13 ]
Vilalta, Ricardo [29 ]
von Krosigk, Belina [13 ,30 ]
Wang, Shen [21 ]
Warburton, Thomas K. [31 ]
机构
[1] Southern Methodist Univ, Dept Phys, Dallas, TX 75205 USA
[2] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[3] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
[4] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[5] Xilinx Res, Dublin, Ireland
[6] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[7] Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA
[8] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[9] Univ Washington, Dept Elect & Comp Engn, Seattle, WA 98195 USA
[10] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[11] Univ Illinois, Dept Phys, Champaign, IL USA
[12] European Org Nucl Res CERN, Meyrin, Switzerland
[13] Karlsruhe Inst Technol, Karlsruhe, Germany
[14] Cerebras Syst, Sunnyvale, CA USA
[15] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[16] Univ Southampton, Dept Phys & Astron, Southampton, Hants, England
[17] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA
[18] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[19] Tech Univ Dresden, Inst Nucl & Particle Phys, Dresden, Germany
[20] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
[21] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[22] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[23] Yale Univ, Dept Phys, New Haven, CT USA
[24] Univ Sydney, Dept Engn & IT, Camperdown, NSW, Australia
[25] Duke Univ, Dept Phys, Durham, NC 27706 USA
[26] Birla Inst Technol & Sci, Pilani, Rajasthan, India
[27] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[28] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[29] Univ Houston, Dept Comp Sci, Houston, TX 77204 USA
[30] Univ Hamburg, Dept Phys, Hamburg, Germany
[31] Iowa State Univ, Dept Phys & Astron, Ames, IA USA
来源
FRONTIERS IN BIG DATA | 2022年 / 5卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
machine learning for science; big data; particle physics; codesign; coprocessors; heterogeneous computing; fast machine learning; ATOMIC LAYER DEPOSITION; NEURAL-NETWORKS; REAL-TIME; MASS-SPECTROMETRY; DEEP; FRAMEWORK; MEMORY; DESIGN; SCALE; OPTIMIZATION;
D O I
10.3389/fdata.2022.787421
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science-the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] Applications and techniques for fast machine learning in science (vol 5, 787421, 2022)
    Deiana, Allison McCarn
    Tran, Nhan
    Agar, Joshua
    Blott, Michaela
    Di Guglielmo, Giuseppe
    Duarte, Javier
    Harris, Philip
    Hauck, Scott
    Liu, Mia
    Neubauer, Mark S.
    Ngadiuba, Jennifer
    Ogrenci-Memik, Seda
    Pierini, Maurizio
    Aarrestad, Thea
    Baehr, Steffen
    Becker, Juergen
    Berthold, Anne-Sophie
    Bonventre, Richard J.
    Mueller Bravo, Tomas E.
    Diefenthaler, Markus
    Dong, Zhen
    Fritzsche, Nick
    Gholami, Amir
    Govorkova, Ekaterina
    Guo, Dongning
    Hazelwood, Kyle J.
    Herwig, Christian
    Khan, Babar
    Kim, Sehoon
    Klijnsma, Thomas
    Liu, Yaling
    Lo, Kin Ho
    Nguyen, Tri
    Pezzullo, Gianantonio
    Rasoulinezhad, Seyedramin
    Rivera, Ryan A.
    Scholberg, Kate
    Selig, Justin
    Sen, Sougata
    Strukov, Dmitri
    Tang, William
    Thais, Savannah
    Unger, Kai Lukas
    Vilalta, Ricardo
    von Krosigk, Belina
    Wang, Shen
    Warburton, Thomas K.
    FRONTIERS IN BIG DATA, 2023, 6
  • [2] A survey of machine learning techniques in structural and multidisciplinary optimization
    Ramu, Palaniappan
    Thananjayan, Pugazhenthi
    Acar, Erdem
    Bayrak, Gamze
    Park, Jeong Woo
    Lee, Ikjin
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (09)
  • [3] Knowledge Discovery in Engineering Applications Using Machine Learning Techniques
    Kubik, Christian
    Molitor, Dirk Alexander
    Becker, Marco
    Groche, Peter
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (09):
  • [4] Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges
    Usama, Muhammad
    Qadir, Junaid
    Raza, Aunn
    Arif, Hunain
    Yau, Kok-Lim Alvin
    Elkhatib, Yehia
    Hussain, Amir
    Al-Fuqaha, Ala
    IEEE ACCESS, 2019, 7 : 65579 - 65615
  • [5] Catalyze Materials Science with Machine Learning
    Kim, Jaehyun
    Kang, Donghoon
    Kim, Sangbum
    Jang, Ho Won
    ACS MATERIALS LETTERS, 2021, 3 (08): : 1151 - 1171
  • [6] Data and Machine Learning in Polymer Science
    Li, Yun-Qi
    Jiang, Ying
    Wang, Li-Quan
    Li, Jian-Feng
    CHINESE JOURNAL OF POLYMER SCIENCE, 2023, 41 (09) : 1371 - 1376
  • [7] Machine learning and applications in ultrafast photonics
    Genty, Goery
    Salmela, Lauri
    Dudley, John M.
    Brunner, Daniel
    Kokhanovskiy, Alexey
    Kobtsev, Sergei
    Turitsyn, Sergei K.
    NATURE PHOTONICS, 2021, 15 (02) : 91 - 101
  • [8] On Development of Data Science and Machine Learning Applications in Databricks
    Ruan, Wenhao
    Chen, Yifan
    Forouraghi, Babak
    SERVICES - SERVICES 2019, 2019, 11517 : 78 - 91
  • [9] Machine learning in materials science
    Wei, Jing
    Chu, Xuan
    Sun, Xiang-Yu
    Xu, Kun
    Deng, Hui-Xiong
    Chen, Jigen
    Wei, Zhongming
    Lei, Ming
    INFOMAT, 2019, 1 (03) : 338 - 358
  • [10] Advanced machine-learning techniques in drug discovery
    Elbadawi, Moe
    Gaisford, Simon
    Basit, Abdul W.
    DRUG DISCOVERY TODAY, 2020, 26 (03) : 769 - 777