Positive solutions for system of 2n-th order Sturm-Liouville boundary value problems on time scales

被引:2
作者
Prasad, K. R. [1 ]
Rao, A. Kameswara [2 ]
Bharathi, B. [2 ]
机构
[1] Andhra Univ, Dept Appl Math, Visakhapatnam 530003, Andhra Pradesh, India
[2] Gayatri Vidya Parishad Coll Engn Women, Dept Math, Visakhapatnam 530048, Andhra Pradesh, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2014年 / 124卷 / 01期
关键词
Time scales; system of equations; boundary value problem; eigenvalue intervals; positive solution; cone; EIGENVALUE PROBLEMS;
D O I
10.1007/s12044-013-0156-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Intervals of the parameters lambda and mu, are determined for which there exist positive solutions to the system of dynamic equations (-1)(n)u(Delta 2n) (t) + lambda p(t)f(v(sigma(t))) = 0, t is an element of [a, b], (-1)(n)v(Delta 2n) (t) + mu q(t)g(u(sigma(t))) = 0, t is an element of [a, b], satisfying the Sturm-Liouville boundary conditions alpha(i+1)u(Delta 2i)(a)-beta(i+1)u(Delta 2i+1)(a)=0, gamma(i+1)u(Delta 2i)(sigma(b))+delta(i+1)u(Delta 2i+1)(sigma(b))=0, alpha(i+1)v(Delta 2i)(a)-beta(i+1)v(Delta 2i+1)(a)=0, gamma(i+1)v(Delta 2i)(sigma(b))+delta(i+1)v(Delta 2i+1)(sigma(b))=0, for 0 <= i <= n - 1. To this end we apply a Guo-Krasnosel'skii fixed point theorem.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 30 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   Sturm-Liouville eigenvalue problems on time scales [J].
Agarwal, RP ;
Bohner, M ;
Wong, PJY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :153-166
[3]   Eigenvalue intervals for a two-point boundary value problem on a measure chain [J].
Anderson, DR .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :57-64
[4]  
ANDERSON DR, 2002, INT J NONLIN DIFFERE, V7, P97
[5]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[6]  
[Anonymous], 1988, NOTES REPORTS MATH S
[7]   Eigenvalue problems for systems of nonlinear boundary value problems on time scales [J].
Benchohra, M. ;
Henderson, J. ;
Ntouyas, S. K. .
ADVANCES IN DIFFERENCE EQUATIONS, 2007, 2007 (1)
[8]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[9]  
Chyan C.J., 1999, Tamkang J. Math, V30, P231
[10]  
Chyan C. J., 1998, ELECT J DIFFERENTIAL, V1998, P1