Localization operators and exponential weights for modulation spaces

被引:30
作者
Cordero, Elena [1 ]
Pilipovic, Stevan
Rodino, Luigi
Teofanov, Nenad
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia Monteneg
关键词
localization operator; ultra-distributions; Gelfand-Shilov type spaces; modulation space; Wigner distribution; short-time Fourier transform; Schatten class;
D O I
10.1007/s00009-005-0052-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study localization operators within the framework of ultra-distributions. More precisely, given a symbol a and two windows phi(1), phi(2), we investigate the multilinear mapping from (a, phi(1), phi(2)) is an element of S-(1)'(R-2d) x S-(1) (R-d) x S-(1) (R-d) to the localization operator A(a)(phi 1,phi 2). Results are formulated in terms of modulation spaces with weights which may have exponential growth. We give sufficient and necessary conditions for A(a)(phi 1,phi 2) to be bounded or to belong to a Schatten class. As an application, we study symbols defined by ultra-distributions with compact support, that give trace class localization operators.
引用
收藏
页码:381 / 394
页数:14
相关论文
共 26 条
[1]  
Berezin FA., 1971, Mat. Sb. (N.S.), V86, P578, DOI 10.1070/SM1971v015n04ABEH001564
[2]   Generalized anti-wick operators with symbols in distributional Sobolev spaces [J].
Boggiatto, P ;
Cordero, E ;
Gröchenig, K .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (04) :427-442
[3]   Characterizations of the Gelfand-Shilov spaces via Fourier transforms [J].
Chung, J ;
Chung, SY ;
Kim, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2101-2108
[4]   Time-frequency analysis of localization operators [J].
Cordero, E ;
Gröchenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :107-131
[5]  
Cordero E, 2005, OSAKA J MATH, V42, P43
[6]  
CORDERO E, 2005, SYMBOLIC CALCULUS FR
[7]  
CORDERO E, 2005, GELLFAND SHILOV WIND
[8]   TIME FREQUENCY LOCALIZATION OPERATORS - A GEOMETRIC PHASE-SPACE APPROACH [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) :605-612
[9]  
FEICHTINGER H. G., 2003, Wavelets and their applications, P99
[10]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .2. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
MONATSHEFTE FUR MATHEMATIK, 1989, 108 (2-3) :129-148