Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells

被引:121
作者
Mehdinia, Ali [1 ]
Ziaei, Ehsan [2 ]
Jabbari, Ali [2 ]
机构
[1] Iranian Natl Inst Oceanog & Atmospher Sci, Dept Marine Sci, Tehran, Iran
[2] KN Toosi Univ Technol, Fac Sci, Dept Chem, Tehran, Iran
关键词
Carbon nanotubes; Tin oxide; Nanocomposits; Anode modification; Microbial fuel cell; ADSORBED CYTOCHROME-C; WASTE-WATER; ELECTRICITY-GENERATION; ESCHERICHIA-COLI; PERFORMANCE; COMPOSITE; CATHODE; ELECTRODES; OXIDATION; ELECTROCHEMISTRY;
D O I
10.1016/j.electacta.2014.03.011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanocomposit of multi-walled carbon nanotubes and tin oxide (MWCNTs/SnO2) was used as an anode material in Microbial fuel cells (MFCs). The anode was constructed by coating of the nanocomposits on the glassy carbon electrode (GCE). The MWCNTs-SnO2/GCE showed the highest electrochemical performance as compared to MWCNT/GCE and bare GCE anodes. MWCNTs-SnO2/GCE, MWCNT/GCE and bare GCE anodes showed maximum power densities of 1421 mWm(-2), 699 mWm(-2) and 457 mWm(-2), respectively. The electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive Xray spectroscopy (EDX). The electrochemical properties of the MFC have been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). High conductivity and large unique surface area extremely enhanced the charge transfer efficiency and the growth of bacterial biofilm on the electrode surface in MFC. Comparison of the power density of the proposed MFC with the other one in the literature showed that the MWCNTs/SnO2 nanocomposit was a desirable anode material for the MFCs. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:512 / 518
页数:7
相关论文
共 63 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[3]   Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials [J].
Chen, Yanfeng ;
Lv, Zhisheng ;
Xu, Jianming ;
Peng, Dongqing ;
Liu, Yingxin ;
Chen, Jiaxian ;
Sun, Xibo ;
Feng, Chunhua ;
Wei, Chaohai .
JOURNAL OF POWER SOURCES, 2012, 201 :136-141
[4]   Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells [J].
Ci, Suqin ;
Wen, Zhenhai ;
Chen, Junhong ;
He, Zhen .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) :71-74
[5]   Biological denitrification in microbial fuel cells [J].
Clauwaert, Peter ;
Rabaey, Korneel ;
Aelterman, Peter ;
De Schamphelaire, Liesje ;
Ham, The Haip ;
Boeckx, Pascal ;
Boon, Nico ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) :3354-3360
[6]  
cLi J., 2013, INT J HYDROGEN ENERG, V38, P1
[7]   Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell [J].
Deng, Qian ;
Li, Xinyang ;
Zuo, Jiane ;
Ling, Alison ;
Logan, Bruce E. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :1130-1135
[8]   Marine microbial fuel cell:: Use of stainless steel electrodes as anode and cathode materials [J].
Dumas, C. ;
Mollica, A. ;
Feron, D. ;
Basseguy, R. ;
Etcheverry, L. ;
Bergel, A. .
ELECTROCHIMICA ACTA, 2007, 53 (02) :468-473
[9]   Biofilm growth from wastewater on MWNTs and carbon aerogels [J].
Dumitru, Anca ;
Morozan, Adina ;
Ghiurea, M. ;
Scott, K. ;
Vulpe, S. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (06) :1484-1487
[10]   Synthesis of tin (II or IV) oxide coated multiwall carbon nanotubes with controlled morphology [J].
Fang, Hai-Tao ;
Sun, Xue ;
Qian, Li-Hua ;
Wang, Da-Wei ;
Li, Feng ;
Chu, Yi ;
Wang, Fu-Ping ;
Cheng, Hui-Ming .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) :5790-5794