Duality and saddle-point type optimality for interval-valued programming

被引:13
作者
Sun, Yuhua [1 ,2 ]
Xu, Xiumei [1 ]
Wang, Laisheng [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Duality; Saddle point; Optimality conditions; Interval-valued function; Lagrangian function; OPTIMIZATION; COEFFICIENTS;
D O I
10.1007/s11590-013-0640-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, Mond-Weir's type dual in programming problem with an interval-valued objective function and interval-valued inequality constrict conditions is formulated. Duality theorems are established under suitable conditions. A real-valued Lagrangian function for the interval-valued programming is defined. Further, the saddle point of Lagrangian function is also defined and saddle point optimality conditions are presented.
引用
收藏
页码:1077 / 1091
页数:15
相关论文
共 25 条
[11]  
Moore R. E., 1966, SOC IND APPL MATH
[12]  
Moore R.E., 1979, METHOD AND APPLICATI
[13]   Multiple objective linear programming models with interval coefficients - an illustrated overview [J].
Oliveira, Carla ;
Henggeler Antunes, Carlos .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1434-1463
[14]   LINEAR-PROGRAMMING WITH FUZZY OBJECTIVES [J].
ROMMELFANGER, H ;
HANUSCHECK, R ;
WOLF, J .
FUZZY SETS AND SYSTEMS, 1989, 29 (01) :31-48
[15]   A PARALLEL RELAXATION METHOD FOR QUADRATIC-PROGRAMMING PROBLEMS WITH INTERVAL CONSTRAINTS [J].
SUGIMOTO, T ;
FUKUSHIMA, M ;
IBARAKI, T .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 60 (1-2) :219-236
[16]  
Sun Y. H., 2012, ADV SCI LETT, V7, P643
[17]  
Sun Y.H., 2012, CSAE PROC IEEE INT C, P27
[18]   OPTIMALITY CONDITIONS AND DUALITY IN NONDIFFERENTIABLE INTERVAL-VALUED PROGRAMMING [J].
Sun, Yuhua ;
Wang, Laisheng .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (01) :131-142
[19]  
Tanaka H., 1973, Journal of Cybernetics, V3, P37, DOI 10.1080/01969727308545912
[20]  
TONG SC, 1994, FUZZY SET SYST, V66, P301, DOI 10.1016/0165-0114(94)90097-3