Duality and saddle-point type optimality for interval-valued programming

被引:13
作者
Sun, Yuhua [1 ,2 ]
Xu, Xiumei [1 ]
Wang, Laisheng [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Duality; Saddle point; Optimality conditions; Interval-valued function; Lagrangian function; OPTIMIZATION; COEFFICIENTS;
D O I
10.1007/s11590-013-0640-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, Mond-Weir's type dual in programming problem with an interval-valued objective function and interval-valued inequality constrict conditions is formulated. Duality theorems are established under suitable conditions. A real-valued Lagrangian function for the interval-valued programming is defined. Further, the saddle point of Lagrangian function is also defined and saddle point optimality conditions are presented.
引用
收藏
页码:1077 / 1091
页数:15
相关论文
共 25 条
[1]   Interval analysis: theory and applications [J].
Alefeld, G ;
Mayer, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) :421-464
[2]  
[Anonymous], 2013, Stochastic Programming
[3]  
Bazaraa M.S., 1990, LINEAR PROGRAMMING N, DOI DOI 10.1002/0471787779
[4]   Interval optimization for uncertain structures [J].
Chen, SH ;
Wu, J ;
Chen, YD .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2004, 40 (11) :1379-1398
[5]   A new class of interval projection neural networks for solving interval quadratic program [J].
Ding, Ke ;
Huang, Nan-Jing .
CHAOS SOLITONS & FRACTALS, 2008, 35 (04) :718-725
[6]   Violation analysis for solid waste management systems: an interval fuzzy programming approach [J].
Huang, YF ;
Baetz, BW ;
Huang, GH ;
Liu, L .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2002, 65 (04) :431-446
[7]   Portfolio selection problem with interval coefficients [J].
Ida, M .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :709-713
[8]   MULTIOBJECTIVE PROGRAMMING IN OPTIMIZATION OF THE INTERVAL OBJECTIVE FUNCTION [J].
ISHIBUCHI, H ;
TANAKA, H .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1990, 48 (02) :219-225
[9]   The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient [J].
Jiang, C. ;
Han, X. ;
Liu, G. R. ;
Li, G. Y. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 182 (1-3) :262-267
[10]   Numerical solution method for general interval quadratic programming [J].
Li, Wei ;
Tian, Xiaoli .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :589-595