Harnack inequalities for jump processes

被引:159
作者
Bass, RF [1 ]
Levin, DA [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Harnack inequality; jump processes; stable processes; Levy systems; integral equations;
D O I
10.1023/A:1016378210944
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of pure jump Markov processes in R-d whose jump kernels are comparable to those of symmetric stable processes. We establish a Harnack inequality for nonnegative functions that are harmonic with respect to these processes. We also establish regularity for the solutions to certain integral equations.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 9 条
[1]  
ATHREYA S, IN PRESS PROBAB THEO
[2]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO
[3]  
2-L
[4]   UNIQUENESS IN LAW FOR PURE JUMP MARKOV-PROCESSES [J].
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (02) :271-287
[5]   Estimates on Green functions and Poisson kernels for symmetric stable processes [J].
Chen, ZQ ;
Song, RM .
MATHEMATISCHE ANNALEN, 1998, 312 (03) :465-501
[6]  
Hoh W., 1995, STOCH STOCH REP, V55, P225
[7]  
KAUSSMANN M, 2001, THESIS U BONN
[8]  
KOMATSU T, 1984, OSAKA J MATH, V21, P113
[9]  
TOMISAKI M, 1978, REP FS ENG SAGA U MA, V6, P1