Stability analysis of piecewise discrete-time linear systems

被引:160
作者
Feng, G [1 ]
机构
[1] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China
关键词
discrete-time systems; linear matrix inequality (LMI); piecewise linear systems; stability;
D O I
10.1109/TAC.2002.800666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note presents a stability analysis method for piecewise discrete-time linear systems based on a piecewise smooth Lyapunov function. It is shown that the stability of the system can be established if a piecewise Lyapunov function can be constructed and, moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that is numerically feasible with commercially available software.
引用
收藏
页码:1108 / 1112
页数:5
相关论文
共 15 条
[1]   Observability and controllability of piecewise affine and hybrid systems [J].
Bemporad, A ;
Ferrari-Trecate, G ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (10) :1864-1876
[2]  
Body S., 1994, Linear Matrix Inequalities in System and Control Theory
[3]  
CUZZOLA FA, 2001, LECT NOTES COMPUTER, V2034, P189
[4]  
Hassibi A, 1998, P AMER CONTR CONF, P3659, DOI 10.1109/ACC.1998.703296
[5]   Characterization of well-posedness of piecewise-linear systems [J].
Imura, J ;
van der Schaft, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (09) :1600-1619
[6]   Computation of piecewise quadratic Lyapunov functions for hybrid systems [J].
Johansson, M ;
Rantzer, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :555-559
[7]  
Kantner M, 1997, P AMER CONTR CONF, P1241, DOI 10.1109/ACC.1997.609732
[8]  
Mignone D, 2000, IEEE DECIS CONTR P, P504, DOI 10.1109/CDC.2000.912814
[9]  
Pettersson S, 1997, IEEE DECIS CONTR P, P199, DOI 10.1109/CDC.1997.650615
[10]  
Pettersson S, 1997, P AMER CONTR CONF, P1714, DOI 10.1109/ACC.1997.610877