Kolmogorov complexity and the geometry of Brownian motion

被引:1
作者
Fouche, Willem L. [1 ]
机构
[1] Univ S Africa, Sch Econ Sci, Dept Decis Sci, ZA-0003 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
PROBABILITY-MEASURES; COMPUTABILITY; RANDOMNESS; DYNAMICS; SETS;
D O I
10.1017/S0960129513000273
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov-Chaitin random reals (complex oscillations). We unfold Kolmogorov-Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion.
引用
收藏
页码:1590 / 1606
页数:17
相关论文
共 27 条
[1]  
[Anonymous], 1986, AUTOMATIKA TELEMEKHA, V1, P25
[2]  
Asarin E. A., 1988, THESIS MOSCOW STATE
[3]  
ASARIN EA, 1986, AUTOMAT REM CONTR+, V47, P21
[4]  
Camia F., 2005, ARXIVCONDMAT0510740V
[5]  
Chaitin G.J., 1987, ALGORITHMIC INFORM T, DOI [10.1017/CBO9780511608858, DOI 10.1017/CBO9780511608858]
[6]   On the computability of a construction of Brownian motion [J].
Davie, George ;
Fouche, Willem L. .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2013, 23 (06) :1257-1265
[7]  
Fontes L. R. G., 2003, ARXIVMATHPR0304119V1
[8]   Arithmetical representations of Brownian motion I [J].
Fouché, W .
JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (01) :421-442
[9]   Dynamics of a generic Brownian motion:: Recursive aspects [J].
Fouche, Willem L. .
THEORETICAL COMPUTER SCIENCE, 2008, 394 (03) :175-186
[10]  
Fouché WL, 2009, LECT NOTES COMPUT SC, V5635, P208, DOI 10.1007/978-3-642-03073-4_22