Existence of solutions to Chern-Simons-Higgs equations on graphs

被引:21
作者
Hou, Songbo [1 ]
Sun, Jiamin [1 ]
机构
[1] China Agr Univ, Coll Sci, Dept Appl Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
KAZDAN-WARNER EQUATION;
D O I
10.1007/s00526-022-02238-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a finite graph. We consider the existence of solutions to a generalized Chern-Simons-Higgs equation Delta u = -lambda e(g(u)) (e(g(u)) - 1)(2) + 4 pi Sigma(N)(j=1) (delta)p(j) on G, where lambda is a positive constant; g(u) is the inverse function of u = f (nu) = 1+nu - e(nu) on (-infinity, 0]; N is a positive integer; p(1), p(2),..., p(N) are distinct vertices of V and delta(pj) is the Dirac delta mass at p(j). We prove that there is critical value lambda(c) such that the generalized Chern-Simons-Higgs equation has a solution if and only if lambda >= lambda(c). We also prove the existence of solutions to the Chern-Simons-Higgs equation Delta u = lambda e(u) (e(u) - 1) + 4 pi Sigma(N delta)(j=1)pj on G when lambda takes the critical value.c and this completes the results of Huang et al. (Commun Math Phys 377:613-621, 2020).
引用
收藏
页数:13
相关论文
共 25 条
[1]   GENERALIZED SELF-DUAL CHERN-SIMONS VORTICES [J].
BURZLAFF, J ;
CHAKRABARTI, A ;
TCHRAKIAN, DH .
PHYSICS LETTERS B, 1992, 293 (1-2) :127-131
[2]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[3]   Non-Local Morphological PDEs and p-Laplacian Equation on Graphs With Applications in Image Processing and Machine Learning [J].
Elmoataz, Abderrahim ;
Desquesnes, Xavier ;
Lezoray, Olivier .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2012, 6 (07) :764-779
[4]   The pth Kazdan-Warner equation on graphs [J].
Ge, Huabin .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (06)
[5]   A NOTE ON LIOUVILLE TYPE EQUATIONS ON GRAPHS [J].
Ge, Huabin ;
Hua, Bobo ;
Jiang, Wenfeng .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) :4837-4842
[6]   KAZDAN-WARNER EQUATION ON INFINITE GRAPHS [J].
Ge, Huabin ;
Jiang, Wenfeng .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) :1091-1101
[7]  
Grady L., 2010, DISCRETE CALCULUS AP
[8]   Existence of positive solutions to some nonlinear equations on locally finite graphs [J].
Grigor'yan, Alexander ;
Lin Yong ;
Yang YunYan .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) :1311-1324
[9]   Yamabe type equations on graphs [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) :4924-4943
[10]   Kazdan-Warner equation on graph [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)