The paradox of Parrondo's games

被引:58
作者
Harmer, GP [1 ]
Abbott, D
Taylor, PG
机构
[1] Univ Adelaide, Ctr Biomed Engn, CBME, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Dept Elect & Elect Engn, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Dept Appl Math, Adelaide, SA 5005, Australia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2000年 / 456卷 / 1994期
关键词
gambling paradox; Brownian ratchet; discrete-time Markov chains;
D O I
10.1098/rspa.2000.0516
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce Parrondo's paradox that involves games of chance. We consider two fair games, A and B, both of which can be made to lose by changing a biasing parameter. An apparently paradoxical situation arises when the two games are played in any alternating order. A winning expectation is produced, even though both games A and B are losing when we play them individually. We develop an explanation of the phenomenon in terms of a Brownian ratchet model, and also develop a mathematical analysis using discrete-time Markov chains. From the analysis we investigate the range of parameter values for which Parrondo's paradox exists.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 17 条
[1]  
ABBOTT D, 2000, IN PRESS P 2 INT C U
[2]   FLUCTUATION DRIVEN RATCHETS - MOLECULAR MOTORS [J].
ASTUMIAN, RD ;
BIER, M .
PHYSICAL REVIEW LETTERS, 1994, 72 (11) :1766-1769
[3]   Thermodynamics and kinetics of a Brownian motor [J].
Astumian, RD .
SCIENCE, 1997, 276 (5314) :917-922
[4]   Brownian ratchets in physics and biology [J].
Bier, M .
CONTEMPORARY PHYSICS, 1997, 38 (06) :371-379
[5]  
BIER M, 1997, STOCH DYNAM, V386, P81
[6]   RANDOMLY RATTLED RATCHETS [J].
DOERING, CR .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1995, 17 (7-8) :685-697
[7]   OPTICAL THERMAL RATCHET [J].
FAUCHEUX, LP ;
BOURDIEU, LS ;
KAPLAN, PD ;
LIBCHABER, AJ .
PHYSICAL REVIEW LETTERS, 1995, 74 (09) :1504-1507
[8]  
FEYNMAN RP, 1963, FEYNMAN LECT PHYSICS, V1
[9]  
Haenggi P., 1996, Nonlinear physics of complex systems. Current status and future trends, P294
[10]  
Harmer GP, 1999, STAT SCI, V14, P206