GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION

被引:9
作者
Li, Chuchen [1 ]
Liu, Huafeng [1 ]
机构
[1] Zhejiang Univ, Dept Opt Engn, State Key Lab Model Opt Instrumentat, Hangzhou 310027, Peoples R China
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Medical image segmentation; Generative adversarial learning;
D O I
10.1109/ISBI48211.2021.9434135
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to the limitation of ethics and the number of professional annotators, pixel-wise annotations for medical images are hard to obtain. Thus, how to exploit limited annotations and maintain the performance is an important yet challenging problem. In this paper, we propose Generative Adversarial Semi-supervised Network(GASNet) to tackle this problem in a self-learning manner. Only limited labels are available during the training procedure and the unlabeled images are exploited as auxiliary information to boost segmentation performance. We modulate segmentation network as a generator to produce pseudo labels whose reliability will be judged by an uncertainty discriminator. Feature mapping loss will obtain statistic distribution consistency between the generated labels and the real ones to further ensure the credibility. We obtain 0.8348 to 0.9131 dice coefficient with 1/32 to 1/2 proportion of annotations respectively on right ventricle dataset. Improvements are up to 28.6 points higher than the corresponding fully supervised baseline.
引用
收藏
页码:303 / 306
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 2016, arXiv
[2]   Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations [J].
Bortsova, Gerda ;
Dubost, Florian ;
Hogeweg, Laurens ;
Katramados, Ioannis ;
de Bruijne, Marleen .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 :810-818
[3]   Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis [J].
Cheplygina, Veronika ;
de Bruijne, Marleen ;
Pluim, Josien P. W. .
MEDICAL IMAGE ANALYSIS, 2019, 54 :280-296
[4]  
French G., 2019, ARXIV PREPRINT ARXIV
[5]   Semi-Supervised Semantic Segmentation With High- and Low-Level Consistency [J].
Mittal, Sudhanshu ;
Tatarchenko, Maxim ;
Brox, Thomas .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (04) :1369-1379
[6]  
Mondal Arnab Kumar, 2019, ARXIV PREPRINT ARXIV
[7]   Deep co-training for semi-supervised image segmentation [J].
Peng, Jizong ;
Estrada, Guillermo ;
Pedersoli, Marco ;
Desrosiers, Christian .
PATTERN RECOGNITION, 2020, 107
[8]   Right ventricle segmentation from cardiac MRI: A collation study [J].
Petitjean, Caroline ;
Zuluaga, Maria A. ;
Bai, Wenjia ;
Dacher, Jean-Nicolas ;
Grosgeorge, Damien ;
Caudron, Jerome ;
Ruan, Su ;
Ben Ayed, Ismail ;
Cardoso, M. Jorge ;
Chen, Hsiang-Chou ;
Jimenez-Carretero, Daniel ;
Ledesma-Carbayo, Maria J. ;
Davatzikos, Christos ;
Doshi, Jimit ;
Erus, Guray ;
Maier, Oskar M. O. ;
Nambakhsh, Cyrus M. S. ;
Ou, Yangming ;
Ourselin, Sebastien ;
Peng, Chun-Wei ;
Peters, Nicholas S. ;
Peters, Terry M. ;
Rajchi, Martin ;
Rueckert, Daniel ;
Santos, Andres ;
Shi, Wenzhe ;
Wang, Ching-Wei ;
Wang, Haiyan ;
Yuan, Jing .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :187-202
[9]   Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images [J].
Song, Yangqiu ;
Zhang, Changshui ;
Lee, Jianguo ;
Wang, Fei ;
Xiang, Shiming ;
Zhang, Dan .
PATTERN ANALYSIS AND APPLICATIONS, 2009, 12 (02) :99-115
[10]   Right Ventricle Segmentation in Short-Axis MRI Using a Shape Constrained Dense Connected U-Net [J].
Yang, Hao ;
Liu, Zexiong ;
Yang, Xuan .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :532-540