A New Frontier in Ionospheric Observations: GPS Total Electron Content Measurements From Ocean Buoys

被引:3
|
作者
Azeem, Irfan [1 ]
Crowley, Geoff [1 ]
Forsythe, Victoriya V. [1 ]
Reynolds, Adam S. [1 ]
Stromberg, Erik M. [1 ]
Wilson, Gordon R. [2 ]
Kohler, Craig A. [3 ]
机构
[1] Atmospher & Space Technol Res Associates LLC, Louisville, CO 80027 USA
[2] Kirtland AFB, Air Force Res Lab, Albuquerque, NM USA
[3] NOAA, Natl Data Buoy Ctr, Stennis Space Ctr, MS USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2020年 / 18卷 / 11期
关键词
ionosphere; TEC; buoys; geomagnetic storm; GPS; GNSS;
D O I
10.1029/2020SW002571
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ground-based Global Navigation Satellite System (GNSS) receivers have become a ubiquitous tool for monitoring the ionosphere. Total electron content (TEC) data from globally distributed networks of ground-based GNSS receivers are increasingly being used to characterize the ionosphere and its variability. The deployment of these GNSS receivers is currently limited to landmasses. This means that 7/10 of Earth's surface, which is covered by the oceans, is left unexplored for persistent ionospheric measurements. In this paper, we describe a new low-power dual-frequency Global Positioning System (GPS) receiver, called Remote Ionospheric Observatory (RIO), which is capable of operating from locations in the air, space, and the oceans as well as on land. Two RIO receivers were deployed and operated from the Tropical Atmosphere Ocean buoys in the Pacific Ocean, and the results are described in this paper. This is the first time that GPS receivers have been operated in open waters for an extended period. Data collected between 1 September 2018 and 31 December 2019 are shown. The observed TEC exhibits a clear seasonal dependence characterized by equinoctial maxima in the data at both locations. Both RIO receivers, deployed near the magnetic equator, show an 18-35% increase in TEC during moderately disturbed geomagnetic periods. Comparisons with the International Reference Ionosphere model show good agreement. The new capability presented in this paper addresses a critical gap in our ability to monitor the ionosphere from the 70% of the Earth's surface that is covered by water.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] EARTHQUAKE PREDICTION, IONOSPHERIC TOTAL ELECTRON CONTENT, AND THREE EARTHQUAKES IN CALIFORNIA
    Urusan, Ahmet Yucel
    THERMAL SCIENCE, 2019, 23 : S165 - S174
  • [32] Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model
    R. Mukesh
    P. Soma
    V. Karthikeyan
    P. Sindhu
    Astrophysics and Space Science, 2019, 364
  • [33] Detection of ionospheric disturbances driven by the 2014 Chile tsunami using GPS total electron content in New Zealand
    Zhang, Xiaohong
    Tang, Long
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (09) : 7918 - 7925
  • [34] On the advantage of stochastic methods in the modeling of ionospheric total electron content: Southeast Asia case study
    Jarmolowski, Wojciech
    Ren, Xiaodong
    Wielgosz, Pawel
    Krypiak-Gregorczyk, Anna
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (04)
  • [35] Ionospheric GNSS Total Electron Content for Tsunami Warning
    Liu, Jann-Yenq
    Lin, Chi-Yen
    Tsai, Yu-Lin
    Liu, Tien-Chi
    Hattori, Katsumi
    Sun, Yang-Yi
    Wu, Tso-Ren
    JOURNAL OF EARTHQUAKE AND TSUNAMI, 2019, 13 (5-6)
  • [36] Variation of the Ionospheric Total Electron Content over Wuhan
    Wang Bo
    Wang Weimin
    Zhang Ren
    Cao Ke
    2011 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE (ICMI 2011), PT 2, 2011, 4 : 171 - +
  • [37] Regional ionospheric total electron content over Africa from ground-based GNSS observations
    Moses, M.
    Dodo, J. D.
    Ojigi, L. M.
    Lawal, K.
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2021, 10 (01): : 17 - 30
  • [38] GPS-derived ionospheric total electron content response to a solar flare that occurred on 14 July 2000
    Zhang, DH
    Xiao, Z
    Igarashi, K
    Ma, GY
    RADIO SCIENCE, 2002, 37 (05) : 19 - 1
  • [39] Spatiotemporal Prediction of Ionospheric Total Electron Content Based on ED-ConvLSTM
    Li, Liangchao
    Liu, Haijun
    Le, Huijun
    Yuan, Jing
    Shan, Weifeng
    Han, Ying
    Yuan, Guoming
    Cui, Chunjie
    Wang, Junling
    REMOTE SENSING, 2023, 15 (12)
  • [40] On the use of an effective ionospheric height in electron content measurement by GPS reception
    Birch, MJ
    Hargreaves, JK
    Bailey, GJ
    RADIO SCIENCE, 2002, 37 (01) : 15 - 1