A new result for global existence and boundedness of solutions to a parabolic-parabolic Keller-Segel system with logistic source

被引:51
作者
Zheng, Jiashan [1 ]
Li, YanYan [1 ]
Bao, Gui [1 ]
Zou, Xinhua [1 ]
机构
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis; Global existence; Logistic source; TIME BLOW-UP; LINEAR CHEMOTAXIS SYSTEM; WEAK SOLUTIONS; MODELS;
D O I
10.1016/j.jmaa.2018.01.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following fully parabolic Keller-Segel system with logistic source {u(t) = Delta u - X-del . (u del v) + au - mu u(2), x is an element of Omega, t > 0, vt = Delta v - v + u, x is an element of Omega, t > 0, (KS) over a bounded domain Omega subset of R-N with smooth boundary partial derivative Omega the parameters a is an element of E,mu > 0, x > 0. It is proved that if mu > 0, then (KS) admits a global weak solution, while if a is an element of E,mu > 0, x > 0 then (KS) possesses a global classical solution, which is bounded, where C 1/n/2+1 n/2+1 is a positive constant which is corresponding to the maximal Sobolev regularity. Apart from this, we also show that if a = 0 and mu > (N-2)-/2 chi C 1/n/2+1 n/2+1, then both u(. , t) and v(. , t) decay to zero with respect to the norm in L-infinity (Omega) gas t ->infinity no. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 68 条
[1]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[2]   The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion [J].
Burger, Martin ;
Di Francesco, Marco ;
Dolak-Struss, Yasmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1288-1315
[3]  
Calvez V., 2000, J MATH PURE APPL, V9, P155
[4]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Cao, Xinru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :181-188
[5]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[6]   New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (06) :2080-2113
[7]   Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 [J].
Cieslak, Tomasz ;
Stinner, Christian .
ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) :135-146
[8]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[9]   Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :437-446
[10]   On a Parabolic-Elliptic system with chemotaxis and logistic type growth [J].
Galakhov, Evgeny ;
Salieva, Olga ;
Ignacio Tello, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (08) :4631-4647