Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs

被引:30
作者
Arena, Gabriella [1 ]
Serapioni, Raul [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
IMPLICIT FUNCTION THEOREM; CARNOT; RECTIFIABILITY; HYPERSURFACES; PERIMETER; SPACES;
D O I
10.1007/s00526-008-0218-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize intrinsic regular submanifolds in the Heisenberg group as intrinsic differentiable graphs.
引用
收藏
页码:517 / 536
页数:20
相关论文
共 26 条
[1]   Currents in metric spaces [J].
Ambrosio, L ;
Kirchheim, B .
ACTA MATHEMATICA, 2000, 185 (01) :1-80
[2]   Rectifiable sets in metric and Banach spaces [J].
Ambrosio, L ;
Kirchheim, B .
MATHEMATISCHE ANNALEN, 2000, 318 (03) :527-555
[3]   Intrinsic regular hypersurfaces in Heisenberg groups [J].
Ambrosio, Luigi ;
Cassano, Francesco Serra ;
Vittone, Davide .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (02) :187-232
[4]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[5]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[6]  
Capogna L., 2007, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
[7]   Implicit function theorem in Carnot-Caratheodory spaces [J].
Citti, G. ;
Manfredini, M. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (05) :657-680
[8]  
CITTI G, BLOW UP NON IN PRESS
[9]  
Folland G. B., 1982, MATH NOTES, V28
[10]  
FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204