Multidimensional visualization and clustering of historical process data

被引:17
|
作者
Thornhill, Nina F.
Melbo, Hallgeir
Wiik, Jan
机构
[1] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[2] ABB Corp Res Ctr, N-1375 Billingstad, Norway
关键词
D O I
10.1021/ie051054q
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Multivariate statistical analysis using principal components can reveal patterns and structures within a data set and give insights into process performance and operation. The output medium is usually a two-dimensional screen, however, so it is a challenge to visualize the multidimensional structure of a data set by means of a two-dimensional plot. An automated method of visualization is described in the form of a hierarchical classification tree that can be used to view and report on the structure within a multivariate principal component model of three or more dimensions. The tree is generated from an unsupervised agglomerative hierarchical clustering algorithm which operates in the score space of the principal component model, and a recursive algorithm is used to draw the tree. It is readily adaptable to a wide range of multivariate analysis applications including process performance analysis and process or equipment auditing. Its application are illustrated with industrial data sets.
引用
收藏
页码:5971 / 5985
页数:15
相关论文
共 50 条
  • [1] Multidimensional visualization of principal component scores for process historical data analysis
    Wang, XZ
    Medasani, S
    Marhoon, F
    Albazzaz, H
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (22) : 7036 - 7048
  • [2] Visualization, clustering and classification of multidimensional astronomical data
    Staiano, A
    Ciaramella, A
    De Vinco, L
    Donalek, C
    Longo, G
    Raiconi, G
    Tagliaferri, R
    Amato, R
    Del Mondo, C
    Mangano, G
    Miele, G
    CAMP 2005: SEVENTH INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION , PROCEEDINGS, 2005, : 141 - 146
  • [3] Similarity clustering of dimensions for an enhanced visualization of multidimensional data
    Ankerst, M
    Berchtold, S
    Keim, DA
    IEEE SYMPOSIUM ON INFORMATION VISUALIZATION - PROCEEDINGS, 1998, : 52 - +
  • [4] A MULTIDIMENSIONAL DATA VISUALIZATION AND CLUSTERING METHOD: CONSENSUS SIMILARITY MAPPING
    Parekh, Vishwa S.
    Jacobs, Michael A.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 420 - 423
  • [5] Multidimensional data visualization
    Pastizzo, MJ
    Erbacher, RF
    Feldman, LB
    BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2002, 34 (02): : 158 - 162
  • [6] Multidimensional data visualization
    Matthew J. Pastizzo
    Robert F. Erbacher
    Laurie B. Feldman
    Behavior Research Methods, Instruments, & Computers, 2002, 34 : 158 - 162
  • [7] Visualization of high-dimensional data using an association of multidimensional scaling to clustering
    Naud, A
    2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 252 - 255
  • [8] Multidimensional spatial clustering and visualization of 3D topographic relief data
    Maurya R.K.
    Kulkarni S.T.
    International Journal of Information Technology, 2021, 13 (2) : 581 - 592
  • [9] A web visualization tool for historical analysis of geo-referenced multidimensional data
    Silva, Sonia Fernandes
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2008, 4947 : 706 - 709
  • [10] Historical Process of Visualization
    Lehmann, Hugo
    ARCHIV FUR DIE GESAMTE PSYCHOLOGIE, 1925, 50 (3-4): : 391 - 398