Interleaving physics- and data-driven models for power system transient dynamics

被引:3
作者
Stankovic, Aleksandar M. [1 ]
Saric, Aleksandar A. [1 ]
Saric, Andrija T. [2 ]
Transtrum, Mark K. [3 ]
机构
[1] Tufts Univ, Dept Elect & Comp Engn, Medford, MA 02155 USA
[2] Fac Tech Sci, Dept Power Elect & Com Engn, Novi Sad, Serbia
[3] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Power system dynamics; Modeling; Physics-based models; Data-driven models; Compressed sensing; Koopman modes;
D O I
10.1016/j.epsr.2020.106824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper explores interleaved and coordinated refinement of physicsand data-driven models in describing transient phenomena in large-scale power systems. We develop and study an integrated analytical and computational data-driven gray box environment needed to achieve this aim. Main ingredients include computational differential geometry-based model reduction, optimization-based compressed sensing, and a finite approximation of the Koopman operator. The proposed two-step procedure (the model reduction by differential geometric (information geometry) tools, and data refinement by the compressed sensing and Koopman theory based dynamics prediction) is illustrated on the multi-machine benchmark example of IEEE 14-bus system with renewable sources, where the results are shown for doubly-fed induction generator (DFIG) with local measurements in the connection point. The algorithm is directly applicable to identification of other dynamic components (for example, dynamic loads).
引用
收藏
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 2005, l1-magic: Recovery of sparse signals via convex programming
[2]   Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator [J].
Arbabi, Hassan ;
Mezic, Igor .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (04) :2096-2126
[3]  
Brunton SL, 2019, Dynam. Syst. Control, DOI DOI 10.1017/9781009089517
[4]   Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses [J].
Chen, Kevin K. ;
Tu, Jonathan H. ;
Rowley, Clarence W. .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (06) :887-915
[5]   The Optimal Hard Threshold for Singular Values is 4/√3 [J].
Gavish, Matan ;
Donoho, David L. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (08) :5040-5053
[6]  
Grant MC, 2018, The CVX users' guide
[7]   Equation-free analysis of a dynamically evolving multigraph [J].
Holiday, A. ;
Kevrekidis, I. G. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (6-7) :1281-1292
[8]  
Milano F, 2010, POWER SYST, P1, DOI 10.1007/978-3-642-13669-6
[9]  
Saric AT, 2019, 2019 IEEE MILAN POWERTECH
[10]   Information geometry for model identification and parameter estimation in renewable energy - DFIG plant case [J].
Saric, Andrija T. ;
Transtrum, Mark K. ;
Stankovic, Aleksandar M. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (06) :1294-1302