Bioelectricity production using shade macrophytes in constructed wetlands-microbial fuel cells

被引:17
作者
Guadarrama-Perez, Oscar [1 ,2 ]
Yarely Bahena-Rabadan, Karen [3 ]
Dehesa-Carrasco, Ulises [4 ]
Guadarrama Perez, Victor Hugo [2 ]
Baltazar Estrada-Arriaga, Edson [1 ]
机构
[1] Inst Mexicano Tecnol Agua, Subcoordinac Tratamiento Aguas Residuales, Paseo Cuauhnahuac 8532, Jiutepec 62550, Morelos, Mexico
[2] Inst Mexicano Tecnol Agua, Subcoordinac Posgrad, Jiutepec, Mexico
[3] Univ Politecn Estado Morelos, Jiutepec, Mexico
[4] Inst Mexicano Tecnol Agua, Coordinac Riego & Drenaje, Jiutepec, Mexico
关键词
Shade macrophytes; constructed wetlands; microbial fuel cells; bioelectricity; root exudates; WASTE-WATER TREATMENT; ELECTRICITY-GENERATION; PERFORMANCE ASSESSMENT; CLIMATE-CHANGE; ENERGY; REMOVAL; PLANTS; PHOTOPERIOD; AERATION; NUTRIENT;
D O I
10.1080/09593330.2020.1841306
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The coupling of constructed wetlands (CW) to microbial fuel cells (MFC) has become a promising hybrid technology due to its high compatibility to generate electricity and remove pollutants from wastewater. In the present study, the bioelectricity production generated from constructed wetlands-microbial fuel cells (CW-MFCs) was evaluated using four species of shade macrophytes: Aglaonema commutatum, Epipremnum aureum, Dranacaena braunni, and Philodendron cordatum. The CW-MFCs were operated in a continuous upflow mode with a hydraulic retention time (HRT) of 4 d. The systems were fed with synthetic water without an external carbon source. The bioelectrochemical systems were operated under diffuse radiation conditions (shadow). Philodendron cordatum was the macrophyte species that produced a maximum voltage of 103 mV, with a power density of 12.5 mW/m(2). High voltages were obtained when the diffuse radiation in the CW-MFCs was 3000-4000 mu mol(.)m(2)/s. The maximum production of root exudates was 20.6 mg/L as total organic carbon for the Philodendron cordatum species. Philodendron cordatum was the macrophyte species that obtained high conversion efficiency (0.0014%), compared to other macrophyte species (< 0.0008%). In the CW-MFCs systems it was observed that the bioelectricity production was mainly due to the quantity of the root exudates released into the rhizospheres of the plants.
引用
收藏
页码:1532 / 1543
页数:12
相关论文
共 73 条
[1]   Bioremediation and Electricity Generation by Using Open and Closed Sediment Microbial Fuel Cells [J].
Abbas, Syed Zaghum ;
Rafatullah, Mohd ;
Khan, Moonis Ali ;
Siddiqui, Masoom Raza .
FRONTIERS IN MICROBIOLOGY, 2019, 9
[2]  
Akpor O., 2014, INT J ENV RES EARTH, V3, P050
[3]   Constructed Wetland-Microbial Fuel Cells for Sustainable Greywater Treatment [J].
Araneda, Ignacio ;
Tapia, Natalia F. ;
Lizama Allende, Katherine ;
Vargas, Ignacio T. .
WATER, 2018, 10 (07)
[4]   The role of root exudates in rhizosphere interations with plants and other organisms [J].
Bais, Harsh P. ;
Weir, Tiffany L. ;
Perry, Laura G. ;
Gilroy, Simon ;
Vivanco, Jorge M. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2006, 57 :233-266
[5]   Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration [J].
Baltazar Estrada-Arriaga, Edson ;
Hernandez-Romano, Jesus ;
Garcia-Sanchez, Liliana ;
Guillen Garces, Rosa Angelica ;
Obed Bahena-Bahena, Erick ;
Guadarrama-Perez, Oscar ;
Moeller Chavez, Gabriela Eleonora .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 214 :232-241
[6]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[7]   Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor [J].
Bombelli, Paolo ;
Dennis, Ross J. ;
Felder, Fabienne ;
Cooper, Matt B. ;
Iyer, Durgaprasad Madras Rajaraman ;
Royles, Jessica ;
Harrison, Susan T. L. ;
Smith, Alison G. ;
Harrison, C. Jill ;
Howe, Christopher J. .
ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (10)
[8]  
Borker M, 2018, INT J ENG TECHNOL, V7, P534
[9]   Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling [J].
Butti, Sai Kishore ;
Velvizhi, G. ;
Sulonen, Mira L. K. ;
Haavisto, Johanna M. ;
Koroglu, Emre Oguz ;
Cetinkaya, Afsin Yusuf ;
Singh, Surya ;
Arya, Divyanshu ;
Modestra, J. Annie ;
Krishna, K. Vamsi ;
Verma, Anil ;
Ozkaya, Bestami ;
Lakaniemi, Aino-Maija ;
Puhakka, Jaakko A. ;
Mohan, S. Venkata .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 53 :462-476
[10]   Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil [J].
Cabezas, Angela ;
Pommerenke, Bianca ;
Boon, Nico ;
Friedrich, Michael W. .
ENVIRONMENTAL MICROBIOLOGY REPORTS, 2015, 7 (03) :489-497