Bioelectricity production using shade macrophytes in constructed wetlands-microbial fuel cells

被引:16
作者
Guadarrama-Perez, Oscar [1 ,2 ]
Yarely Bahena-Rabadan, Karen [3 ]
Dehesa-Carrasco, Ulises [4 ]
Guadarrama Perez, Victor Hugo [2 ]
Baltazar Estrada-Arriaga, Edson [1 ]
机构
[1] Inst Mexicano Tecnol Agua, Subcoordinac Tratamiento Aguas Residuales, Paseo Cuauhnahuac 8532, Jiutepec 62550, Morelos, Mexico
[2] Inst Mexicano Tecnol Agua, Subcoordinac Posgrad, Jiutepec, Mexico
[3] Univ Politecn Estado Morelos, Jiutepec, Mexico
[4] Inst Mexicano Tecnol Agua, Coordinac Riego & Drenaje, Jiutepec, Mexico
关键词
Shade macrophytes; constructed wetlands; microbial fuel cells; bioelectricity; root exudates; WASTE-WATER TREATMENT; ELECTRICITY-GENERATION; PERFORMANCE ASSESSMENT; CLIMATE-CHANGE; ENERGY; REMOVAL; PLANTS; PHOTOPERIOD; AERATION; NUTRIENT;
D O I
10.1080/09593330.2020.1841306
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The coupling of constructed wetlands (CW) to microbial fuel cells (MFC) has become a promising hybrid technology due to its high compatibility to generate electricity and remove pollutants from wastewater. In the present study, the bioelectricity production generated from constructed wetlands-microbial fuel cells (CW-MFCs) was evaluated using four species of shade macrophytes: Aglaonema commutatum, Epipremnum aureum, Dranacaena braunni, and Philodendron cordatum. The CW-MFCs were operated in a continuous upflow mode with a hydraulic retention time (HRT) of 4 d. The systems were fed with synthetic water without an external carbon source. The bioelectrochemical systems were operated under diffuse radiation conditions (shadow). Philodendron cordatum was the macrophyte species that produced a maximum voltage of 103 mV, with a power density of 12.5 mW/m(2). High voltages were obtained when the diffuse radiation in the CW-MFCs was 3000-4000 mu mol(.)m(2)/s. The maximum production of root exudates was 20.6 mg/L as total organic carbon for the Philodendron cordatum species. Philodendron cordatum was the macrophyte species that obtained high conversion efficiency (0.0014%), compared to other macrophyte species (< 0.0008%). In the CW-MFCs systems it was observed that the bioelectricity production was mainly due to the quantity of the root exudates released into the rhizospheres of the plants.
引用
收藏
页码:1532 / 1543
页数:12
相关论文
共 73 条
  • [1] Bioremediation and Electricity Generation by Using Open and Closed Sediment Microbial Fuel Cells
    Abbas, Syed Zaghum
    Rafatullah, Mohd
    Khan, Moonis Ali
    Siddiqui, Masoom Raza
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 9
  • [2] Akpor O., 2014, INT J ENV RES EARTH, V3, P050
  • [3] Constructed Wetland-Microbial Fuel Cells for Sustainable Greywater Treatment
    Araneda, Ignacio
    Tapia, Natalia F.
    Lizama Allende, Katherine
    Vargas, Ignacio T.
    [J]. WATER, 2018, 10 (07)
  • [4] The role of root exudates in rhizosphere interations with plants and other organisms
    Bais, Harsh P.
    Weir, Tiffany L.
    Perry, Laura G.
    Gilroy, Simon
    Vivanco, Jorge M.
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, 2006, 57 : 233 - 266
  • [5] Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration
    Baltazar Estrada-Arriaga, Edson
    Hernandez-Romano, Jesus
    Garcia-Sanchez, Liliana
    Guillen Garces, Rosa Angelica
    Obed Bahena-Bahena, Erick
    Guadarrama-Perez, Oscar
    Moeller Chavez, Gabriela Eleonora
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 214 : 232 - 241
  • [6] Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
    Blankenship, Robert E.
    Tiede, David M.
    Barber, James
    Brudvig, Gary W.
    Fleming, Graham
    Ghirardi, Maria
    Gunner, M. R.
    Junge, Wolfgang
    Kramer, David M.
    Melis, Anastasios
    Moore, Thomas A.
    Moser, Christopher C.
    Nocera, Daniel G.
    Nozik, Arthur J.
    Ort, Donald R.
    Parson, William W.
    Prince, Roger C.
    Sayre, Richard T.
    [J]. SCIENCE, 2011, 332 (6031) : 805 - 809
  • [7] Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor
    Bombelli, Paolo
    Dennis, Ross J.
    Felder, Fabienne
    Cooper, Matt B.
    Iyer, Durgaprasad Madras Rajaraman
    Royles, Jessica
    Harrison, Susan T. L.
    Smith, Alison G.
    Harrison, C. Jill
    Howe, Christopher J.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (10):
  • [8] Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling
    Butti, Sai Kishore
    Velvizhi, G.
    Sulonen, Mira L. K.
    Haavisto, Johanna M.
    Koroglu, Emre Oguz
    Cetinkaya, Afsin Yusuf
    Singh, Surya
    Arya, Divyanshu
    Modestra, J. Annie
    Krishna, K. Vamsi
    Verma, Anil
    Ozkaya, Bestami
    Lakaniemi, Aino-Maija
    Puhakka, Jaakko A.
    Mohan, S. Venkata
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 53 : 462 - 476
  • [9] Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil
    Cabezas, Angela
    Pommerenke, Bianca
    Boon, Nico
    Friedrich, Michael W.
    [J]. ENVIRONMENTAL MICROBIOLOGY REPORTS, 2015, 7 (03): : 489 - 497
  • [10] Electricity generation from moss with light-driven microbial fuel cells
    Castresana, Pablo Ampudia
    Martinez, Sara Monasterio
    Freeman, Emma
    Eslava, Salvador
    Di Lorenzo, Mirella
    [J]. ELECTROCHIMICA ACTA, 2019, 298 : 934 - 942