High Contrast Ultrathin Light-Field Camera Using Inverted Microlens Arrays with Metal-Insulator-Metal Optical Absorber

被引:39
作者
Bae, Sang-In [1 ]
Kim, Kisoo [1 ]
Jang, Kyung-Won [1 ]
Kim, Hyun-Kyung [1 ]
Jeong, Ki-Hun [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, KAIST Inst Hlth Sci & Technol KIHST, Dept Bio & Brain Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
depth estimation; high resolution; light-field camera; metal-insulator-metal absorber; microlens arrays; DISPLAYS; VISION;
D O I
10.1002/adom.202001657
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Light-field imaging has attracted much attention in constructing 3D objects with a simple configuration and capturing all the spatial and directional data in a single photographic exposure. Here, an ultrathin light-field camera (ULFC) for high contrast and high-resolution light-field imaging using a metal-insulator-metal optical absorber based inverted microlens arrays (MIM-iMLA) is reported. A metal-insulator-metal based optical absorber (MIM-OA) between microlenses exhibits high light absorption in the full visible region, thereby highly blocking microlens crosstalk. The MIM-iMLA double the image contrast and improve MTF50 by up to 32%, compared to conventional light-field image. In addition, the MIM-iMLA substantially reduces an image plane distance and brings the objective lens position closer to the MLA. The ULFC exhibits a short total track length of 5.1 mm, demonstrating high contrast light-field image acquisition and high accuracy 3D depth map estimation after light-field rendering. This ultrathin and high contrast light-field camera can provide a new platform for miniaturized 3D cameras in biomedical applications, biometrics, automated inspection, or mobile camera applications.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[2]   Multifocal microlens arrays using multilayer photolithography [J].
Bae, Sang-In ;
Kim, Kisoo ;
Yang, Sungpyo ;
Jang, Kyung-Won ;
Jeong, Ki-Hun .
OPTICS EXPRESS, 2020, 28 (07) :9082-9088
[3]   Light-Field Imaging Toolkit [J].
Bolan, Jeffrey ;
Hall, Elise ;
Clifford, Chris ;
Thurow, Brian .
SoftwareX, 2015, 5 :101-106
[4]   Thin wafer-level camera lenses inspired by insect compound eyes [J].
Brueckner, Andreas ;
Duparre, Jacques ;
Leitel, Robert ;
Dannberg, Peter ;
Braeuer, Andreas ;
Tuennermann, Andreas .
OPTICS EXPRESS, 2010, 18 (24) :24379-24394
[5]   Structured light field 3D imaging [J].
Cai, Zewei ;
Liu, Xiaoli ;
Peng, Xiang ;
Yin, Yongkai ;
Li, Ameng ;
Wu, Jiachen ;
Gao, Bruce Z. .
OPTICS EXPRESS, 2016, 24 (18) :20324-20334
[6]   Optical meta-devices: advances and applications [J].
Chen, Mu-Ku ;
Chu, Cheng Hung ;
Lin, Ren Jie ;
Chen, Jia-Wern ;
Huang, Yi-Teng ;
Huang, Tzu-Ting ;
Kuo, Hsin Yu ;
Tsai, Din Ping .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (SK)
[7]   Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera [J].
Chiabrando, Filiberto ;
Chiabrando, Roberto ;
Piatti, Dario ;
Rinaudo, Fulvio .
SENSORS, 2009, 9 (12) :10080-10096
[8]   Structured-light 3D surface imaging: a tutorial [J].
Geng, Jason .
ADVANCES IN OPTICS AND PHOTONICS, 2011, 3 (02) :128-160
[9]   Design and application of industrial machine vision systems [J].
Golnabi, H. ;
Asadpour, A. .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2007, 23 (06) :630-637
[10]  
Hanrahan P., 2005, STANFORD TECH REPORT, V1, P11