Gradient approach of computing fixed points of equilibrium problems

被引:19
作者
Antipin, A [1 ]
机构
[1] Russian Acad Sci, Ctr Comp, Moscow 117967, Russia
关键词
equilibrium programming problem; fixed point; gradient approach; symmetry; skewsymmetry;
D O I
10.1023/A:1020321209606
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Potential equilibrium problems are considered. The notions of bilinear differential and bi-convexity are introduced. The concept of generalized potentiality is offered. The convergence of gradient prediction-type methods for solving of generalized potential equilibrium problems is justified. Estimates of convergence rate are derived.
引用
收藏
页码:285 / 309
页数:25
相关论文
共 29 条
[1]  
[Anonymous], 1988, NUMERICAL METHODS SO
[2]  
ANTIPIN AC, 1996, COMP MATH MATH PHYS, V3, P263
[3]  
ANTIPIN AC, 1995, RUSS MATH, V6, P14
[4]  
ANTIPIN AS, 1994, AUTOMAT REM CONTR+, V55, P311
[5]  
ANTIPIN AS, 1995, COMP MATH MATH PHYS+, V35, P539
[6]  
ANTIPIN AS, 1992, DIFF EQUAT+, V28, P1498
[7]  
ANTIPIN AS, 1977, EKON MATH METODY, V3, P560
[8]  
ANTIPIN AS, 1995, DIFF EQUAT, V11, P1754
[9]  
ANTIPIN AS, 1998, COMP MATH MATH PHYS, V7, P1069
[10]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0