Complex geometry of quantum cones

被引:3
作者
Brzezinski, Tomasz [1 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2014年 / 62卷 / 9-10期
关键词
Quantum cone; differential calculus; smooth algebra; holomorphic structure;
D O I
10.1002/prop.201400051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The algebras obtained as fixed points of the action of the cyclic group Z(N) on the coordinate algebra of the quantum disc are studied. These can be understood as coordinate algebras of quantum or non-commutative cones. The following observations are made. First, contrary to the classical situation, the actions of Z(N) are free and the resulting algebras are homologically smooth. Second, the quantum cone algebras admit differential calculi that have all the characteristics of calculi on smooth complex curves. Third, the corresponding volume forms are exact, indicating that the constructed algebras describe manifolds with boundaries. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:875 / 880
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[2]  
Bavula V., 1991, FUNKTSIONAL ANAL PRI, V25, P80
[3]   *-compatible connections in noncommutative Riemannian geometry [J].
Beggs, E. J. ;
Majid, S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) :95-124
[4]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[5]  
Brzezinski T., 2012, P SCI CORFU 2011
[6]   On the Smoothness of the Noncommutative Pillow and Quantum Teardrops [J].
Brzezinski, Tomasz .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
[7]   Non-commutative integral forms and twisted multi-derivations [J].
Brzezinski, Tomasz ;
El Kaoutit, Laiachi ;
Lomp, Christian .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (02) :281-312
[8]   Covering and gluing of algebras and differential algebras [J].
Calow, D ;
Matthes, R .
JOURNAL OF GEOMETRY AND PHYSICS, 2000, 32 (04) :364-396
[9]   Holomorphic Structures on the Quantum Projective Line [J].
Khalkhali, Masoud ;
Landi, Giovanni ;
van Suijlekom, Walter Daniel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (04) :851-884
[10]   A 2-PARAMETER QUANTUM DEFORMATION OF THE UNIT DISC [J].
KLIMEK, S ;
LESNIEWSKI, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 115 (01) :1-23