Large superconducting wind turbine generators

被引:37
作者
Abrahamsen, A. B. [1 ]
Magnusson, N. [2 ]
Jensen, B. B. [3 ]
Runde, M. [2 ,4 ]
机构
[1] Tech Univ Denmark, DTU Wind Energy, DK-4000 Roskilde, Denmark
[2] SINTEF Energy Res, NO-7465 Trondheim, Norway
[3] Tech Univ Denmark, Dept Elect Engn, DK-2800 Lyngby, Denmark
[4] Norwegian Univ Sci & Technol, Dept Elect Power Engn, NO-7491 Trondheim, Norway
来源
SELECTED PAPERS FROM DEEP SEA OFFSHORE WIND R&D CONFERENCE | 2012年 / 24卷
关键词
Superconductors; off-shore wind turbines; generators;
D O I
10.1016/j.egypro.2012.06.087
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To realize large (>10 MW) direct-driven off-shore wind turbines, a number of steps are needed to reduce weight and cost compared to on-shore technologies. One of the major challenges is to provide drive trains which can comply with the large torque as the turbine rotor diameter is scaled up and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34 tons, diameter of 4.2 m and length of 1.2 m can be realized using superconductors carrying 300 A/mm(2) in a magnetic field of 4 T and an air gap flux density of the order 2.5 T. The results are compared to the performance of available superconductors, as well as the near future forecasted performance. (C) 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of SINTEF Energi AS. Open access under CC BY-NC-ND license.
引用
收藏
页码:60 / 67
页数:8
相关论文
共 11 条
[1]   Feasibility study of 5 MW superconducting wind turbine generator [J].
Abrahamsen, A. B. ;
Jensen, B. B. ;
Seiler, E. ;
Mijatovic, N. ;
Rodriguez-Zermeno, V. M. ;
Andersen, N. H. ;
Ostergard, J. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2011, 471 (21-22) :1464-1469
[2]   Superconducting wind turbine generators [J].
Abrahamsen, A. B. ;
Mijatovic, N. ;
Seiler, E. ;
Zirngibl, T. ;
Traeholt, C. ;
Norgard, P. B. ;
Pedersen, N. F. ;
Andersen, N. H. ;
Ostergard, J. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (03)
[3]  
Abrahamsen A.B., 2012, SUPERCONDUC IN PRESS
[4]  
[Anonymous], 2007 IEEE POW ENG SO
[5]  
Berta S, 2010, PRIZZT SEM FINL 4 NO
[6]  
Li GZ, SUPERCOND S IN PRESS
[7]   Commercial Induction Heaters With High-Temperature Superconductor Coils [J].
Runde, Magne ;
Magnusson, Niklas ;
Fuelbier, Christoph ;
Buehrer, Carsten .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) :1379-1383
[8]   Winding, cooling and initial testing of a 10 H superconducting MgB2 coil for an induction heater [J].
Saetre, F. ;
Hiltunen, I. ;
Runde, M. ;
Magnusson, N. ;
Jarvela, J. ;
Bjerkli, J. ;
Engebrethsen, E. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2011, 24 (03)
[9]  
Siemens, SWT 6 0 TURB SPEC
[10]  
Snitchler G., 2010, INT POW EL C ECCE AS, P5