Ozsvath-Szabo bordered algebras and subquotients of category O

被引:4
作者
Lauda, Aaron D. [1 ]
Manion, Andrew [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
Category O; Bordered Floer homology; Quantum super algebras; Categorification; gl(1 vertical bar 1); HOLOMORPHIC DISKS; CRYSTAL BASES; FLOER HOMOLOGY; LINK HOMOLOGY; KNOT HOMOLOGY; HOWE DUALITY; CATEGORIFICATION; MODULES; SHEAVES; REPRESENTATIONS;
D O I
10.1016/j.aim.2020.107455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Ozsvath-Szabo's bordered algebra used to efficiently compute knot Floer homology is a graded flat deformation of the regular block of a q-presentable quotient of parabolic category O. We identify the endomorphism algebra of a minimal projective generator for this block with an explicit quotient of the Ozsvath-Szabo algebra using Sartori's diagrammatic formulation of the endomorphism algebra. Both of these algebras give rise to categorifications of tensor products of the vector representation V-circle times n for U-q(gl(1 vertical bar 1)). Our isomorphism allows us to transport a number of constructions between these two algebras, leading to a new (fully) diagrammatic reinterpretation of Sartori's algebra, new modules over Ozsvath-Szabo's algebra lifting various bases of V-circle times n, and bimodules over Ozsvath-Szabo's algebra categorifying the action of the quantum group element F and its dual on V (circle times n). (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:59
相关论文
共 93 条
  • [1] KHOVANOV HOMOLOGY FROM FLOER COHOMOLOGY
    Abouzaid, Mohammed
    Smith, Ivan
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 32 (01) : 1 - 79
  • [2] THE SYMPLECTIC ARC ALGEBRA IS FORMAL
    Abouzaid, Mohammed
    Smith, Ivan
    [J]. DUKE MATHEMATICAL JOURNAL, 2016, 165 (06) : 985 - 1060
  • [3] Alishahi A., 2019, ARXIV 1909 03865
  • [4] [Anonymous], 2008, PREPRINT
  • [5] [Anonymous], 2007, London Math. Soc. Lecture Note Ser., DOI DOI 10.1017/CBO9780511735134.005
  • [6] [Anonymous], 2000, AM MATH SOC, V13, P295
  • [7] [Anonymous], ARXIV13090155
  • [8] Auroux D, 2010, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, P917
  • [9] Khovanov-Seidel quiver algebras and bordered Floer homology
    Auroux, Denis
    Grigsby, J. Elisenda
    Wehrli, Stephan M.
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01): : 1 - 55
  • [10] BEILINSON A, 1981, CR ACAD SCI I-MATH, V292, P15