Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method

被引:143
作者
Fan, EG [1 ]
机构
[1] Fudan Univ, Key Lab Nonlinear Math Models & Methods, Inst Math, Shanghai 200433, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 32期
关键词
D O I
10.1088/0305-4470/35/32/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schrodinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally.
引用
收藏
页码:6853 / 6872
页数:20
相关论文
共 51 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]  
Akhiezer N. I., 1990, Elements of the Theory of Elliptic Functions, DOI DOI 10.1090/MMONO/079
[3]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[4]  
BELOKOLOS E, 1994, ALGEBRO GEOMETRICAL
[5]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[6]   Quasi-periodic solutions of the coupled nonlinear Schrodinger equations [J].
Christiansen, PL ;
Eilbeck, JC ;
Enolskii, VZ ;
Kostov, NA .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 451 (1943) :685-700
[7]   LINK BETWEEN SOLITARY WAVES AND PROJECTIVE RICCATI-EQUATIONS [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5609-5623
[8]   PARTIAL-DERIVATIVE-OVERBAR-DRESSING AND EXACT-SOLUTIONS FOR THE (2+1)-DIMENSIONAL HARRY-DYM EQUATION [J].
DUBROVSKY, VG ;
KONOPELCHENKO, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (13) :4619-4628
[9]   Travelling solitary wave solutions to a seventh-order generalized KdV equation [J].
Duffy, BR ;
Parkes, EJ .
PHYSICS LETTERS A, 1996, 214 (5-6) :271-272
[10]   Darboux transformation and solutions for an equation in 2+1 dimensions [J].
Estévez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) :1406-1419