Calabi-Yau Volumes and Reflexive Polytopes

被引:15
作者
He, Yang-Hui [1 ,2 ,3 ]
Seong, Rak-Kyeong [4 ]
Yau, Shing-Tung [5 ]
机构
[1] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[2] City Univ London, Dept Math, London EC1V 0HB, England
[3] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[4] Uppsala Univ, Dept Phys & Astron, Angstrom Lab, Box 516, S-75120 Uppsala, Sweden
[5] Harvard Univ, Dept Math, Jefferson Phys Lab, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
基金
英国科学技术设施理事会;
关键词
SASAKI-EINSTEIN MANIFOLDS; MIRROR SYMMETRY; TORIC GEOMETRY; A-MAXIMIZATION; GAUGE-THEORIES; CLASSIFICATION; SINGULARITIES;
D O I
10.1007/s00220-018-3128-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study various geometrical quantities for Calabi-Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki-Einstein base of the corresponding Calabi-Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki-Einstein volume with respect to various topological quantities of the corresponding toric varieties. We give interpretations about these volume bounds in the context of associated field theories via the AdS/CFT correspondence.
引用
收藏
页码:155 / 204
页数:50
相关论文
共 50 条
  • [1] Machine learning of Calabi-Yau volumes
    Krefl, Daniel
    Seong, Rak-Kyeong
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [2] All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra
    Schoeller, Friedrich
    Skarke, Harald
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 372 (02) : 657 - 678
  • [3] Convergence of Calabi-Yau manifolds
    Ruan, Wei-Dong
    Zhang, Yuguang
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1543 - 1589
  • [4] COINCIDENCES BETWEEN CALABI-YAU MANIFOLDS OF BERGLUND-HUBSCH TYPE AND BATYREV POLYTOPES
    Belavin, A. A.
    Belakovskii, M. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 205 (02) : 1439 - 1455
  • [5] Supercongruences for rigid hypergeometric Calabi-Yau threefolds
    Long, Ling
    Tu, Fang-Ting
    Yui, Noriko
    Zudilin, Wadim
    ADVANCES IN MATHEMATICS, 2021, 393
  • [6] Sphere Partition Function of Calabi-Yau GLSMs
    Erkinger, David
    Knapp, Johanna
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 394 (01) : 257 - 307
  • [7] Quantum periods of Calabi-Yau fourfolds
    Gerhardus, Andreas
    Jockers, Hans
    NUCLEAR PHYSICS B, 2016, 913 : 425 - 474
  • [8] The Expanding Zoo of Calabi-Yau Threefolds
    Davies, Rhys
    ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [9] Double spinor Calabi-Yau varieties
    Manivel, Laurent
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2019, 3
  • [10] A strange family of Calabi-Yau 3-folds
    Nuer, Howard J.
    Devlin, Patrick
    STRING-MATH 2014, 2016, 93 : 245 - 262