Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level

被引:41
作者
Li, Chaohan [1 ]
Li, Yansu [1 ]
Bai, Longqiang [1 ]
Zhang, Tieyao [1 ]
He, Chaoxing [1 ]
Yan, Yan [1 ]
Yu, Xianchang [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
HORIZONTAL GENE-TRANSFER; SMALL RNAS; MESSENGER-RNA; ARABIDOPSIS-THALIANA; CONSERVED MICRORNAS; NEGATIVE REGULATION; STRESS; EXPRESSION; PHLOEM; BIOGENESIS;
D O I
10.1111/ppl.12122
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Grafting is an important agricultural technique widely used for improving growth, yields and tolerance of crops to abiotic and biotic stresses. As one type of endogenous, non-coding small RNAs, microRNAs (miRNAs) regulate development and responsiveness to biotic and abiotic stresses by negatively mediating expression of target genes at the post-transcriptional level. However, there have been few detailed studies to evaluate the role of miRNAs in mediation of grafting-induced physiological processes in plants. Cucumis sativus and Cucurbita moschata are important vegetables worldwide. We constructed eight small RNA libraries from leaves and roots of seedlings that were grafted in the following four ways: (1) hetero-grafting, using cucumber as scion and pumpkin as rootstock; (2) hetero-grafting, with pumpkin as scion and cucumber as rootstock; (3) auto-grafting of cucumbers and (4) auto-grafting of pumpkins. High-throughput sequencing was employed, and more than 120 million raw reads were obtained. We annotated 112 known miRNAs belonging to 40 miRNA families and identified 48 new miRNAs in the eight libraries, and the targets of these known and novel miRNAs were predicted by bioinformatics. Grafting led to changes in expression of most miRNAs and their predicted target genes, suggesting that miRNAs may play significant roles in mediating physiological processes of grafted seedlings by regulating the expression of target genes. The potential role of the grafting-responsive miRNAs in seedling growth and long-distance transport of miRNA was discussed. These results are useful for functional characterization of miRNAs in mediation of grafting-dependent physiological processes.
引用
收藏
页码:406 / 422
页数:17
相关论文
共 86 条
[1]   Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature [J].
Ahn, SJ ;
Im, YJ ;
Chung, GC ;
Cho, BH ;
Suh, SR .
SCIENTIA HORTICULTURAE, 1999, 81 (04) :397-408
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]   pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene [J].
Aung, Kyaw ;
Lin, Shu-I ;
Wu, Chia-Chune ;
Huang, Yu-Ting ;
Su, Chun-Lin ;
Chiou, Tzyy-Jen .
PLANT PHYSIOLOGY, 2006, 141 (03) :1000-1011
[4]   PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J].
Bari, Rajendra ;
Pant, Bikram Datt ;
Stitt, Mark ;
Scheible, Wolf-Ruediger .
PLANT PHYSIOLOGY, 2006, 141 (03) :988-999
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5 [J].
Barth, Stephanie ;
Pfuhl, Thorsten ;
Mamiani, Alfredo ;
Ehses, Claudia ;
Roemer, Klaus ;
Kremmer, Elisabeth ;
Jaeker, Christoph ;
Hoeck, Julia ;
Meister, Gunter ;
Graesser, Friedrich A. .
NUCLEIC ACIDS RESEARCH, 2008, 36 (02) :666-675
[7]   The give-and-take of DNA: horizontal gene transfer in plants [J].
Bock, Ralph .
TRENDS IN PLANT SCIENCE, 2010, 15 (01) :11-22
[8]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36
[9]   Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis [J].
Brosnan, C. A. ;
Mitter, N. ;
Christie, M. ;
Smith, N. A. ;
Waterhouse, P. M. ;
Carroll, B. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (37) :14741-14746
[10]   Phloem small RNAs, nutrient stress responses, and systemic mobility [J].
Buhtz, Anja ;
Pieritz, Janin ;
Springer, Franziska ;
Kehr, Julia .
BMC PLANT BIOLOGY, 2010, 10