Effect of nanoclay on the mechanical properties of PMMA/clay nanocomposite foams

被引:75
作者
Fu, Jin
Naguib, Hani E. [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] Univ Ottawa, Dept Mech Engn, Ottawa, ON K1N 6N5, Canada
关键词
nanocomposite; foams; processing; PMMA; mechanical properties;
D O I
10.1177/0021955X06063517
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this study, the effects of nanoclay on the mechanical properties of poly(methylmethacrylate) (PMMA)/clay nanocomposite foams are investigated. Intercalated PMMA/clay nanocomposites have been prepared through a solvent co-precipitation method. PMMA/clay nanocomposites with only 0.5wt% of well-dispersed montmorillonite nanoclay showed considerable improvement of mechanical properties; specifically in elastic modulus, tensile strength, and elongation at break. However, with an increased load of clay in the nanocomposite, the mechanical properties decreased due to the agglomeration of excessive nanoclay. Microcellular foams have been processed with PMMA/clay nanocomposite material using a subcritical gas foaming method. When a short foaming time is used, the increased amount of nanoclay induced a greater amount of heterogeneous nucleation during the foaming process and therefore decreased the density of the foam. In contrast, when a longer foaming time is used, foam density increased with a larger nanoclay load due to the higher diffusivity coefficient Of CO2 blowing agent. Nanoclay, as a nucleation agent and reinforcement filler, changed the foaming behavior and mechanical properties of the PMMA microcellular foams. The microcellular foams made of PMMA/clay nanocompoaite with 0.5 wt% exhibited an optimized mechanical response under tensile experiments. It is observed that the mechanical properties of nanocomposite foams are greatly related to the mechanical properties of unfoamed material and foam density. The nanoclay dispersion quality is a very important factor for the mechanical properties of both foamed and unfoamed polymer/clay nanocomposites.
引用
收藏
页码:325 / 342
页数:18
相关论文
共 47 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]  
BALDWIN DF, 1992, ANTEC 92, V38, P1503
[3]   Modeling the barrier properties of polymer-layered silicate nanocomposites [J].
Bharadwaj, RK .
MACROMOLECULES, 2001, 34 (26) :9189-9192
[4]  
Biswas M, 2001, ADV POLYM SCI, V155, P167
[5]  
Bourbigot S, 2000, FIRE MATER, V24, P201, DOI 10.1002/1099-1018(200007/08)24:4<201::AID-FAM739>3.0.CO
[6]  
2-D
[7]  
Chandler T, 2002, S DAK REV, V40, P7
[8]   IMPACT TOUGHENING OF POLYCARBONATE BY MICROCELLULAR FOAMING [J].
COLLIAS, DI ;
BAIRD, DG ;
BORGGREVE, RJM .
POLYMER, 1994, 35 (18) :3978-3983
[9]   THE NUCLEATION OF MICROCELLULAR THERMOPLASTIC FOAM WITH ADDITIVES .1. THEORETICAL CONSIDERATIONS [J].
COLTON, JS ;
SUH, NP .
POLYMER ENGINEERING AND SCIENCE, 1987, 27 (07) :485-492
[10]   THE NUCLEATION OF MICROCELLULAR THERMOPLASTIC FOAM WITH ADDITIVES .2. EXPERIMENTAL RESULTS AND DISCUSSION [J].
COLTON, JS ;
SUH, NP .
POLYMER ENGINEERING AND SCIENCE, 1987, 27 (07) :493-499