Variational solutions of coupled Hamilton-Jacobi equations

被引:9
作者
Loreti, P
Caffarelli, GV
机构
[1] Univ Rome La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applic, I-00161 Rome, Italy
[2] Consiglio Nazl Ric, Ist Applicaz Calcolo Mauro Picone, I-00161 Rome, Italy
关键词
Hamilton-Jacobi equations; variational solutions; viscosity solutions;
D O I
10.1007/s002459911002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we study variational solutions of weakly coupled Hamilton-Jacobi equations in the case where the Hamiltonians are convex. More precisely, we build the variational solution by an approximation scheme.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 12 条
[1]  
Benton S, 1977, HAMILTON JACOBI EQUA
[2]   OPTIMAL SWITCHING FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DOLCETTA, IC ;
EVANS, LC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (01) :143-161
[3]  
ENGLER H, 1991, P LOND MATH SOC, V63, P212
[4]   PERRON METHOD FOR HAMILTON-JACOBI EQUATIONS [J].
ISHII, H .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :369-384
[5]   VISCOSITY SOLUTIONS FOR MONOTONE SYSTEMS OF 2ND-ORDER ELLIPTIC PDES [J].
ISHII, H ;
KOIKE, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (6-7) :1095-1128
[6]  
KATSOULAKIS S, 1994, DIFFERENTIAL INTEGRA, V7, P367
[7]   UNIQUENESS OF VISCOSITY SOLUTIONS FOR MONOTONE SYSTEMS OF FULLY NONLINEAR PDES UNDER DIRICHLET CONDITION [J].
KOIKE, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (04) :519-532
[8]  
LEACI A, 1981, COMMUN PART DIFF EQ, V6, P289
[9]  
Lions P-L., 1982, GEN SOLUTIONS HAMILT
[10]  
LIONS PL, 1983, COMMUN PART DIFF EQ, V8, P1101