Specificity of 14-3-3 isoform dimer interactions and phosphorylation

被引:144
作者
Aitken, A
Baxter, H
Dubois, T
Clokie, S
Mackie, S
Mitchell, K
Peden, A
Zemlickova, E
机构
[1] Univ Edinburgh, Div Biomed, Edinburgh EH8 9XD, Midlothian, Scotland
[2] Univ Edinburgh, Clin Lab, Edinburgh EH8 9XD, Midlothian, Scotland
关键词
phosphorylation; protein-interaction motif; signalling;
D O I
10.1042/bst0300351
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins that interact with 14-3-3 isoforms are involved in regulation of the cell cycle, intracellular trafficking/targeting, signal transduction, cytoskeletal structure and transcription. Recent novel roles for 14-3-3 isoforms include nuclear trafficking the direct interaction with cruciform DNA and with a number of receptors, small G-proteins and their regulators. Recent findings also show that the mechanism of interaction is also more complex than the initial finding of the novel phosphoserine/threoninemotif. Non-phosphorylated binding motifs that can also be of high affinity may show a more isoform-dependent interaction and binding of a protein through two distinct binding motifs to a dimeric 14-3-3 may also be essential for full interaction. Phosphorylation of specific 14-3-3 isoforms can also regulate interactions. In many cases, they show a distinct preference for a particular isoform(s) of 14-3-3. A specific repertoire of dimer formation may influence which of the 14-3-3-interacting proteins could be brought together. Mammalian and yeast 14-3-3 isoforms show a preference for dimerization with specific partners in vivo.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 78 条
[1]  
AITKEN A, 1990, NATURE, V344, P594
[2]   14-3-3-ALPHA AND 14-3-3-DELTA ARE THE PHOSPHORYLATED FORMS OF RAF-ACTIVATING 14-3-3-BETA AND 14-3-3-ZETA - IN-VIVO STOICHIOMETRIC PHOSPHORYLATION IN BRAIN AT A SER-PRO-GLU-LYS MOTIF [J].
AITKEN, A ;
HOWELL, S ;
JONES, D ;
MADRAZO, J ;
PATEL, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) :5706-5709
[3]   14-3-3 and its possible role in co-ordinating multiple signalling pathways [J].
Aitken, A .
TRENDS IN CELL BIOLOGY, 1996, 6 (09) :341-347
[4]   Binding of purified 14-3-3 ζ signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex [J].
Andrews, RK ;
Harris, SJ ;
McNally, T ;
Berndt, MC .
BIOCHEMISTRY, 1998, 37 (02) :638-647
[5]   14-3-3γ interacts with and is phosphorylated by multiple protein kinase C isoforms in PDGF-stimulated human vascular smooth muscle cells [J].
Autieri, MV ;
Carbone, CJ .
DNA AND CELL BIOLOGY, 1999, 18 (07) :555-564
[6]  
Benzing T, 2000, J BIOL CHEM, V275, P28167
[7]   BCR AND RAF FORM A COMPLEX IN-VIVO VIA 14-3-3-PROTEINS [J].
BRASELMANN, S ;
MCCORMICK, F .
EMBO JOURNAL, 1995, 14 (19) :4839-4848
[8]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[9]  
Cacace AM, 1999, MOL CELL BIOL, V19, P229
[10]   Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14-3-3 zeta [J].
Campbell, JK ;
Gurung, R ;
Romero, S ;
Speed, CJ ;
Andrews, RK ;
Berndt, MC ;
Mitchell, CA .
BIOCHEMISTRY, 1997, 36 (49) :15363-15370