Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends

被引:59
作者
Pradeepa, P. [1 ]
Raj, S. Edwin [1 ]
Sowmya, G. [1 ]
Kalaiselvimary, J. [1 ]
Prabhu, M. Ramesh [1 ]
机构
[1] Alagappa Univ, Sch Phys, Karaikkudi 630004, Tamil Nadu, India
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2016年 / 205卷
关键词
Polymer blend; Salt concentration; AC-impedance spectroscopy; Cyclic voltammetry; Thermal stability; IONIC-CONDUCTIVITY; ELECTRICAL-PROPERTIES; BATTERIES; MORPHOLOGY; BEHAVIOR; OXIDE); PEMA;
D O I
10.1016/j.mseb.2015.11.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] 18.75 wt% blend based electrolyte films containing different concentrations (2-10) wt% of lithium salt were prepared. The miscibility studies have been performed by using X-ray diffraction and Fourier transform infrared spectroscopy. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. A room temperature conductivity of 2.3912 x 10(-4) S cm(-1) has been obtained for PEO (6.25)-PVdF-HFP (18.75)-LiClO4 (8)-PC (67) polymer complex. The temperature dependence of the conductivity of polymer electrolyte seems to obey VTF relation. Electrochemical stability (3.3 V) was observed in the prepared polymer electrolyte. Reduction process and oxidation process of the prepared electrolyte system have also been evaluated by means of cyclic voltammetry. Thermogravimetric analysis results indicate thermal stability of PEO/PVdF-HFP lithium salt complexes. Roughness parameter of the sample having maximum ionic conductivity was studied by AFM. The morphology of the polymer complex is investigated by using SEM. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:6 / 17
页数:12
相关论文
共 41 条
[1]  
Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
[2]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[3]   The effect of salt concentration on the PEO-LiClO4-lithium electrode interfacial resistivity [J].
Bac, Artur ;
Ciosek, Marcin ;
Bukat, M. ;
Siekierski, M. ;
Wieczorek, Wladyslaw .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :438-442
[4]   Transport properties and microstructure of gel polymer electrolytes [J].
Capiglia, C ;
Saito, Y ;
Yamamoto, H ;
Kageyama, H ;
Mustarelli, P .
ELECTROCHIMICA ACTA, 2000, 45 (8-9) :1341-1345
[5]   Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications [J].
Costa, C. M. ;
Nunes-Pereira, J. ;
Rodrigues, L. C. ;
Silva, M. M. ;
Gomez Ribelles, J. L. ;
Lanceros-Mendez, S. .
ELECTROCHIMICA ACTA, 2013, 88 :473-476
[6]  
Cowie J. M. G., 1987, POLYM ELECTROLYTES R, V1, P92
[7]   The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles [J].
Elashmawi, I. S. ;
Elsayed, Nadia H. ;
Altalhi, Fatma A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 617 :877-883
[8]   Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends [J].
Fan, LZ ;
Dang, ZM ;
Nan, CW ;
Li, M .
ELECTROCHIMICA ACTA, 2002, 48 (02) :205-209
[9]   Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4554-4569
[10]   Gel electrolytes based on ionic liquids for advanced lithium polymer batteries [J].
Hofmann, Andreas ;
Schulz, Michael ;
Hanemann, Thomas .
ELECTROCHIMICA ACTA, 2013, 89 :823-831