Artificial Intelligence in Musculoskeletal Imaging: Current Status and Future Directions

被引:104
作者
Gyftopoulos, Soterios [1 ,2 ]
Lin, Dana [1 ]
Knoll, Florian [1 ]
Doshi, Ankur M. [1 ]
Rodrigues, Tatiane Cantarelli [1 ]
Recht, Michael P. [1 ]
机构
[1] NYU Langone Hlth, Dept Radiol, 660 First Ave, New York, NY 10016 USA
[2] NYU Langone Hlth, Dept Orthoped Surg, New York, NY 10016 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; deep learning; fast MRI; machine learning; MRI; musculoskeletal imaging; METAL ARTIFACT REDUCTION; NEURAL-NETWORKS; DEEP; MODEL; MRI; IMAGES;
D O I
10.2214/AJR.19.21117
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OBJECTIVE. The objective of this article is to show how artificial intelligence (AI) has impacted different components of the imaging value chain thus far as well as to describe its potential future uses. CONCLUSION. The use of AI has the potential to greatly enhance every component of the imaging value chain. From assessing the appropriateness of imaging orders to helping predict patients at risk for fracture, AI can increase the value that musculoskeletal imagers provide to their patients and to referring clinicians by improving image quality, patient centricity, imaging efficiency, and diagnostic accuracy.
引用
收藏
页码:506 / 513
页数:8
相关论文
共 73 条
[1]  
ACR, Appropriateness Criteria
[2]  
[Anonymous], 2013, ADV MECH ENG, DOI DOI 10.1371/J0URNAL.P0NE.0058952
[3]  
Antony J., 2017, Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity using Convolutional Neural Networks
[4]  
Antony J, ARXIVORGABS160200020
[5]   Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images [J].
Burns, Joseph E. ;
Yao, Jianhua ;
Summers, Ronald M. .
RADIOLOGY, 2017, 284 (03) :788-797
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]   Automated detection and classification of the proximal humerus fracture by using deep learning algorithm [J].
Chung, Seok Won ;
Han, Seung Seog ;
Lee, Ji Whan ;
Oh, Kyung-Soo ;
Kim, Na Ra ;
Yoon, Jong Pil ;
Kim, Joon Yub ;
Moon, Sung Hoon ;
Kwon, Jieun ;
Lee, Hyo-Jin ;
Noh, Young-Min ;
Kim, Youngjun .
ACTA ORTHOPAEDICA, 2018, 89 (04) :468-473
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]  
Cross N, DIAGNOSTIC QUALITY M
[10]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274