DNA nanotechnology for building artificial dynamic systems

被引:6
作者
Liu, Na [1 ,2 ]
机构
[1] Heidelberg Univ, Max Planck Inst Intelligent Syst, Heidelberg, Germany
[2] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
基金
欧洲研究理事会;
关键词
biological; biomimetic (assembly); nanostructure; chemical synthesis; devices; SUBUNIT ROTATION; KINESIN; MOTOR; MICROTUBULES; MECHANICS; MOVEMENT; PROTEINS;
D O I
10.1557/mrs.2019.155
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A fundamental design rule that nature has developed for biological machines is the intimate correlation between motion and function. One class of biological machines is molecular motors in living cells, which directly convert chemical energy into mechanical work. They coexist in every eukaryotic cell, but differ in their types of motion, the filaments they bind to, the cargos they carry, as well as the work they perform. Such natural structures offer inspiration and blueprints for constructing DNA-assembled artificial systems, which mimic their functionality. In this article, we describe two groups of cytoskeletal motors, linear and rotary motors. We discuss how their artificial analogues can be built using DNA nanotechnology. Finally, we summarize ongoing research directions and conclude that DNA origami has a bright future ahead.
引用
收藏
页码:576 / 581
页数:6
相关论文
共 50 条
[21]   An Adamantane-Based Building Block for DNA Networks [J].
Pathak, Richa ;
Marx, Andreas .
CHEMISTRY-AN ASIAN JOURNAL, 2011, 6 (06) :1450-1455
[22]   Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli [J].
El-Sagheer, Afaf H. ;
Sanzone, A. Pia ;
Gao, Rachel ;
Tavassoli, Ali ;
Brown, Tom .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (28) :11338-11343
[23]   Artificial Smooth Muscle Model Composed of Hierarchically Ordered Microtubule Asters Mediated by DNA Origami Nanostructures [J].
Matsuda, Kento ;
Kabir, Arif Md. Rashedul ;
Akamatsu, Naohide ;
Saito, Ai ;
Ishikawa, Shumpei ;
Matsuyama, Tsuyoshi ;
Ditzer, Oliver ;
Islam, Md. Sirajul ;
Ohya, Yuichi ;
Sada, Kazuki ;
Konagaya, Akihiko ;
Kuzuya, Akinori ;
Kakugo, Akira .
NANO LETTERS, 2019, 19 (06) :3933-3938
[24]   DNA assembled photoactive systems [J].
Ma, Ke ;
Harris, Alexander W. ;
Cha, Jennifer N. .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2018, 38 :18-29
[25]   Waddington, Dynamic Systems, and Epigenetics [J].
Tronick, Ed ;
Hunter, Richard G. .
FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2016, 10
[26]   Dendritic DNA Building Blocks for Amplified Detection Assays and Biomaterials [J].
Feldkamp, Udo ;
Sacca, Barbara ;
Niemeyer, Christof M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (33) :5996-6000
[27]   A smart DNA tweezer for universal proximity assay and logic building [J].
Jin, Yifan ;
Wang, Jingyi ;
Wu, Yuanyu ;
Fu, Xinrui ;
Li, Wei .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 298
[28]   Dynamic Programming of a DNA Walker Controlled by Protons [J].
Yao, Dongbao ;
Bhadra, Sanchita ;
Erhu, Xiong ;
Liang, Haojun ;
Ellington, Andrew D. ;
Jung, Cheulhee .
ACS NANO, 2020, 14 (04) :4007-4013
[29]   A dynamic DNA tetrahedron framework for active targeting [J].
Tian, Taoran ;
Zhang, Tao ;
Shi, Sirong ;
Gao, Yang ;
Cai, Xiaoxiao ;
Lin, Yunfeng .
NATURE PROTOCOLS, 2023, 18 (04) :1028-+
[30]   Using DNA nanostructures to harvest light and create energy transfer and harvesting systems [J].
Diaz, Sebastian A. ;
Buckhout-White, Susan ;
Brown, Carl W., III ;
Samanta, Anirban ;
Klein, William P. ;
Ancona, Mario G. ;
Dwyer, Chris L. ;
Goldman, Ellen R. ;
Melinger, Joseph S. ;
Cunningham, Paul D. ;
Spillmann, Chris M. ;
Medintz, Igor L. .
SPIE BIOPHOTONICS AUSTRALASIA, 2016, 10013