Enhanced DNA damage response through RAD50 in triple negative breast cancer resistant and cancer stem-like cells contributes to chemoresistance

被引:20
作者
Abad, Etna [1 ,2 ]
Civit, Laia [1 ]
Potesil, David [3 ]
Zdrahal, Zbynek [3 ,4 ]
Lyakhovich, Alex [1 ,5 ]
机构
[1] Vall dHebron Res Inst VHIR, Passeig Vall dHebron 119-129, Barcelona 08035, Spain
[2] Univ Pompeu Fabra, Dept Expt & Hlth Sci, Barcelona, Spain
[3] Masaryk Univ, CEITEC Cent European Inst Technol, Res Grp Prote, Brno, Czech Republic
[4] Fed Res Ctr Fundamental & Translat Med, Inst Mol Biol & Biophys, Novosibirsk, Russia
[5] Masaryk Univ, Fac Sci, Natl Ctr Biomol Res, Brno, Czech Republic
关键词
cancer stem cells; chemoresistance; DNA damage repair; RAD50; triple‐ negative breast cancer; HOMOLOGOUS RECOMBINATION; REPAIR; PATHWAY; MRE11-RAD50-NBS1; MAINTENANCE; DISRUPTION; EXPRESSION; INHIBITOR; PROGNOSIS; KINASE;
D O I
10.1111/febs.15588
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A growing body of evidence supports the notion that cancer resistance is driven by a small subset of cancer stem cells (CSC), responsible for tumor initiation, growth, and metastasis. Both CSC and chemoresistant cancer cells may share common qualities to activate a series of self-defense mechanisms against chemotherapeutic drugs. Here, we aimed to identify proteins in chemoresistant triple-negative breast cancer (TNBC) cells and corresponding CSC-like spheroid cells that may contribute to their resistance. We have identified several candidate proteins representing the subfamilies of DNA damage response (DDR) system, the ATP-binding cassette, and the 26S proteasome degradation machinery. We have also demonstrated that both cell types exhibit enhanced DDR when compared to corresponding parental counterparts, and identified RAD50 as one of the major contributors in the resistance phenotype. Finally, we have provided evidence that depleting or blocking RAD50 within the Mre11-Rad50-NBS1 (MRN) complex resensitizes CSC and chemoresistant TNBC cells to chemotherapeutic drugs.
引用
收藏
页码:2184 / 2202
页数:19
相关论文
共 47 条
[1]   Common Metabolic Pathways Implicated in Resistance to Chemotherapy Point to a Key Mitochondrial Role in Breast Cancer [J].
Abad, Etna ;
Garcia-Mayea, Yoelsis ;
Mir, Cristina ;
Sebastian, David ;
Zorzano, Antonio ;
Potesil, David ;
Zdrahal, Zbynek ;
Lyakhovich, Alex ;
Lleonart, Matilde E. .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (02) :231-244
[2]   Activation of glycogenolysis and glycolysis in breast cancer stem cell models [J].
Abad, Etna ;
Samino, Sara ;
Yanes, Oscar ;
Potesil, David ;
Zdrahal, Zbynek ;
Lyakhovich, Alex .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2020, 1866 (10)
[3]   DNA damage response and resistance of cancer stem cells [J].
Abad, Etna ;
Graifer, Dmitry ;
Lyakhovich, Alex .
CANCER LETTERS, 2020, 474 :106-117
[4]   Molecular disruption of RAD50 sensitizes human tumor cells to cisplatin-based chemotherapy [J].
Abuzeid, Waleed M. ;
Jiang, Xiaoling ;
Shi, Guoli ;
Wang, Hui ;
Paulson, David ;
Araki, Koji ;
Jungreis, David ;
Carney, James ;
O'Malley, Bert W., Jr. ;
Li, Daqing .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (07) :1974-1985
[5]   Rad50 Is Dispensable for the Maintenance and Viability of Postmitotic Tissues [J].
Adelman, Carrie A. ;
De, Saurav ;
Petrini, John H. J. .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (02) :483-492
[6]   High Expression of MRE11-RAD50-NBS1 Is Associated with Poor Prognosis and Chemoresistance in Gastric Cancer [J].
Altan, Bolag ;
Yokobori, Takehiko ;
Ide, Munenori ;
Bai, Tuya ;
Yanoma, Toru ;
Kimura, Akiharu ;
Kogure, Norimichi ;
Suzuki, Masaki ;
Bao, Pinjie ;
Mochiki, Erito ;
Ogata, Kyoichi ;
Handa, Tadashi ;
Kaira, Kyoichi ;
Nishiyama, Masahiko ;
Asao, Takayuki ;
Oyama, Tetsunari ;
Kuwano, Hiroyuki .
ANTICANCER RESEARCH, 2016, 36 (10) :5237-5247
[7]   Cold-Inducible RNA-Binding Protein Bypasses Replicative Senescence in Primary Cells through Extracellular Signal-Regulated Kinase 1 and 2 Activation [J].
Artero-Castro, Ana ;
Callejas, Francisco B. ;
Castellvi, Josep ;
Kondoh, Hiroshi ;
Carnero, Amancio ;
Fernandez-Marcos, Pablo J. ;
Serrano, Manuel ;
Ramon y Cajal, Santiago ;
Lleonart, Matilde E. .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (07) :1855-1868
[8]   Structural and functional analysis of Mre11-3 [J].
Arthur, LM ;
Gustausson, K ;
Hopfner, KP ;
Carson, CT ;
Stracker, TH ;
Karcher, A ;
Felton, D ;
Weitzman, MD ;
Tainer, J ;
Carney, JP .
NUCLEIC ACIDS RESEARCH, 2004, 32 (06) :1886-1893
[9]   Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy [J].
Bartucci, M. ;
Svensson, S. ;
Romania, P. ;
Dattilo, R. ;
Patrizii, M. ;
Signore, M. ;
Navarra, S. ;
Lotti, F. ;
Biffoni, M. ;
Pilozzi, E. ;
Duranti, E. ;
Martinelli, S. ;
Rinaldo, C. ;
Zeuner, A. ;
Maugeri-Sacca, M. ;
Eramo, A. ;
De Maria, R. .
CELL DEATH AND DIFFERENTIATION, 2012, 19 (05) :768-778
[10]   Unravelling cancer stem cell potential [J].
Beck, Benjamin ;
Blanpain, Cedric .
NATURE REVIEWS CANCER, 2013, 13 (10) :727-738