Biological abatement of inhibitors in rice hull hydrolyzate and fermentation to ethanol using conventional and engineered microbes

被引:22
作者
Nichols, Nancy N. [1 ]
Hector, Ronald E. [1 ]
Saha, Badal C. [1 ]
Frazer, Sarah E. [1 ]
Kennedy, Gregory J. [1 ]
机构
[1] USDA ARS, Natl Ctr Agr Utilizat Res, Bioenergy Res Unit, Peoria, IL 61604 USA
关键词
Rice hulls; Fermentation; Inhibitors; Bioabatement; Hemicellulose; DILUTE-ACID PRETREATMENT; ESCHERICHIA-COLI STRAINS; SACCHAROMYCES-CEREVISIAE; ACETIC-ACID; XYLOSE REDUCTASE; DETOXIFICATION; HYDROLYSATE; SACCHARIFICATION; METABOLISM; FUNGUS;
D O I
10.1016/j.biombioe.2014.04.026
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Microbial inhibitors arise from lignin, hemicellulose, and degraded sugar during pretreatment of lignocellulosic biomass. The fungus Coniochaeta ligniaria NRRL30616 has native ability to metabolize a number of these compounds, including furan and aromatic aldehydes known to act as inhibitors toward relevant fermenting microbes. In this study, C. ligniaria was used to metabolize and remove inhibitory compounds from pretreated rice hulls, which comprise a readily available agricultural residue rich in glucose (0.32-0.33 g glucan/g hulls) and xylose (0.15-0.19 g xylan/g hulls). Samples were dilute-acid pretreated and subjected to bioabatement of inhibitors by C. ligniaria. The bioabated rice hull hemicellulose hydrolyzates were then utilized for ethanol fermentations. In bioabated liquors, glucose was converted to 0.58% (w/v) ethanol by Saccharomyces cerevisiae D5a at 100% of theoretical yield, while fermentations of unabated hydrolyzates either failed to exit lag phase or had reduced ethanol yield (80% of theoretical). In fermentations using ethanologens engineered for conversion of pentoses, bioabatement of hydrolyzates similarly improved fermentations. Fermentation of xylose and arabinose by ethanologenic Escherichia coli FBR5 yielded 2.25% and 0.05% (w/v) ethanol from bioabated and unabated samples, respectively. Fermentations using S. cerevisiae YRH400 had decreased fermentation lag times in bioabated hydrolyzates. However, xylose metabolism in S. cerevisiae YRH400 was strongly affected by pH and acetate concentration. Published by Elsevier Ltd.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 39 条
[1]   Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4 [J].
Agrawal, Manoj ;
Chen, Rachel Ruizhen .
BIOTECHNOLOGY LETTERS, 2011, 33 (11) :2127-2133
[2]   Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF) [J].
Almeida, Joao R. M. ;
Modig, Tobias ;
Roder, Anja ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie-F .
BIOTECHNOLOGY FOR BIOFUELS, 2008, 1 (1)
[3]   Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain [J].
Bellissimi, Eleonora ;
van Dijken, Johannes P. ;
Pronk, Jack T. ;
van Maris, Antonius J. A. .
FEMS YEAST RESEARCH, 2009, 9 (03) :358-364
[4]   A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation [J].
Bera, Aloke K. ;
Ho, Nancy W. Y. ;
Khan, Aftab ;
Sedlak, Miroslav .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (05) :617-626
[5]   Bioethanol production from rice straw: An overview [J].
Binod, Parameswaran ;
Sindhu, Raveendran ;
Singhania, Reeta Rani ;
Vikram, Surender ;
Devi, Lalitha ;
Nagalakshmi, Satya ;
Kurien, Noble ;
Sukumaran, Rajeev K. ;
Pandey, Ashok .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4767-4774
[6]   Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae [J].
Casey, Elizabeth ;
Sedlak, Miroslav ;
Ho, Nancy W. Y. ;
Mosier, Nathan S. .
FEMS YEAST RESEARCH, 2010, 10 (04) :385-393
[7]   Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains K011 and SL40 [J].
Dien, BS ;
Hespell, RB ;
Ingram, LO ;
Bothast, RJ .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1997, 13 (06) :619-625
[8]   Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass [J].
Dien, BS ;
Nichols, NN ;
O'Bryan, PJ ;
Bothast, RJ .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 84-6 (1-9) :181-196
[9]   METABOLISM Biofuel via biodetoxification [J].
Dong, Hongwei ;
Bao, Jie .
NATURE CHEMICAL BIOLOGY, 2010, 6 (05) :316-318
[10]  
Gerhardt P, 1981, Manual of Methods for General Bacteriology